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Overview

prefetch instructions don’t check privileges

prefetch instructions leak timing information

exploit this to:

locate a driver in kernel = defeat KASLR

translate virtual to physical addresses
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Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does
not fit in cache. Use of software prefetch should be limited to memory
addresses that are managed or owned within the application context.
Prefetching to addresses that are not mapped to physical pages can
experience non-deterministic performance penalty. For example
specifying a NULL pointer (0L) as address for a prefetch can cause
long delays.
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CPU Caches

Memory (DRAM) is slow compared to the CPU

buffer frequently used memory

every memory reference goes through the cache

based on physical addresses

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’164



www.iaik.tugraz.at

Memory Access Latency
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Unprivileged cache maintainance

Optimize cache usage:

prefetch: suggest CPU to load data into cache

clflush: throw out data from all caches

... based on virtual addresses
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Software prefetching

prefetch instructions are somewhat unusual

hints – can be ignored by the CPU

do not check privileges or cause exceptions

but they do need to translate virtual to physical
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Kernel must be mapped in every address space

Today’s operating systems:
Shared address space

User memory Kernel memory
0 −1

context switch
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Address translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)
48-bit virtual address

CR3 PML4
PML4E 0
PML4E 1

···
#PML4I
···

PML4E 511

PDPT
PDPTE 0
PDPTE 1

···
#PDPTI
···

PDPTE 511

Page Directory
PDE 0
PDE 1

···
PDE #PDI

···
PDE 511

Page Table
PTE 0
PTE 1

···
PTE #PTI

···
PTE 511

4 KiB Page
Byte 0
Byte 1

···
Offset

···
Byte 4095
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Address Translation Caches

Core 0

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Core 1

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Page table structures in
system memory (DRAM)

Lookup
direction
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Address Space Layout Randomization (ASLR)

Process A

0 −1

Process B

0 −1

Process C

0 −1

Same library – different offset!
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Kernel Address Space Layout Randomization (KASLR)

Process A

0 −1

Process B

0 −1

Process C

0 −1

Same driver – different offset!
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Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1
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OS X, Linux, BSD, Xen PVM (Amazon EC2)
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Translation-Level Oracle
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Address-Translation Oracle
User space Cache

Kernel space
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Address-Translation Oracle
User space Cache

Kernel space

cached

cached
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Address-Translation Oracle
User space Cache

Kernel space

flush
clflush
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Address-Translation Oracle
User space Cache

Kernel space

load

prefetch
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Address-Translation Oracle
User space Cache

Kernel space

reload (cache hit)
load
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Timing the prefetch instruction

The CPU may reorder prefetch instruction – a look at rdtscp

prefetch

rdtscp

prefetch

rdtscp

prefetch

prefetch
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prefetch
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prefetch
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Timing the prefetch instruction

The CPU may reorder instructions

instruction 1

cpuid

instruction 2

cpuid

instruction 3

but not over cpuid!
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Windows 10 Memory layout

HAL, kernel, kernel drivers located bewetween

start: 0xffff 8000 0000 0000

end : 0xffff 9fff ffff ffff
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Breaking Windows KASLR

for all mapped pages (found via translation-level oracle):

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)

→ Fastest average access time is a driver page.

Full attack on Windows 10 in < 12 seconds
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www.iaik.tugraz.at

Breaking Windows KASLR

for all mapped pages (found via translation-level oracle):
1. evict translation caches: Sleep() / access large memory buffer

2. perform syscall to driver
3. time prefetch(page address)

→ Fastest average access time is a driver page.

Full attack on Windows 10 in < 12 seconds

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1619



www.iaik.tugraz.at

Breaking Windows KASLR

for all mapped pages (found via translation-level oracle):
1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver

3. time prefetch(page address)

→ Fastest average access time is a driver page.

Full attack on Windows 10 in < 12 seconds

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1619



www.iaik.tugraz.at

Breaking Windows KASLR

for all mapped pages (found via translation-level oracle):
1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)

→ Fastest average access time is a driver page.

Full attack on Windows 10 in < 12 seconds

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1619



www.iaik.tugraz.at

Breaking Windows KASLR

for all mapped pages (found via translation-level oracle):
1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)

→ Fastest average access time is a driver page.

Full attack on Windows 10 in < 12 seconds

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1619



www.iaik.tugraz.at

Breaking Windows KASLR

for all mapped pages (found via translation-level oracle):
1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)

→ Fastest average access time is a driver page.

Full attack on Windows 10 in < 12 seconds

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1619



www.iaik.tugraz.at

Locate Kernel Driver (defeat KASLR)
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Kernel exploits (10 years ago)

overwrite return address

→ jump to userspace code

overwrite stack pointer

→ switch to userspace stack
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Mitigating kernel exploits

Jump to userspace code? Nope! Hardware prevents that.

= supervisor-mode execution prevention (SMEP)

Switch to userspace stack? Nope! Hardware prevents that.

= supervisor-mode access prevention (SMAP)
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Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.
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Evading the mitigation

get direct-physical-map address of userspace address

→ jump/switch there

known as “ret2dir” attacks (Kemerlis et al. 2014)
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Mitigating the evasion

getting rid of direct-physical map?

Apparently not.

→ do not leak physical addresses to user
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Prefetching via direct-physical map
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Prefetching via direct-physical map

immediately leaks a direct-physical map address

→ no physical address necessary (compared to ret2dir)

if direct-physical map offset is known

→ leaks physical address
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Countermeasure
Today’s operating systems:

Shared address space
User memory Kernel memory

0 −1

context switch

Stronger kernel isolation:
User address space

User memory Not mapped
0 −1

Kernel address space

Not mapped Kernel memory
0 −1

context switch

sw
itch

addr.
space

Interrupt
dispatcher
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Conclusion

prefetch leaks significant information

we can locate a driver in the kernel and thus break KASLR

break SMAP/SMEP and get physical addresses

countermeasure could be implemented in software
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