
www.iaik.tugraz.at

Prefetch Side-Channel Attacks:
Bypassing SMAP and Kernel ASLR

D. Gruss, C. Maurice, A. Fogh†, M. Lipp, S. Mangard
Graz University of Technology, † G DATA Advanced Analytics

October 25, 2016 — CCS’16

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’161



www.iaik.tugraz.at

Overview

prefetch instructions don’t check privileges

prefetch instructions leak timing information

exploit this to:

locate a driver in kernel = defeat KASLR

translate virtual to physical addresses

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’162



www.iaik.tugraz.at

Overview

prefetch instructions don’t check privileges

prefetch instructions leak timing information

exploit this to:

locate a driver in kernel = defeat KASLR

translate virtual to physical addresses

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’162



www.iaik.tugraz.at

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does
not fit in cache. Use of software prefetch should be limited to memory
addresses that are managed or owned within the application context.
Prefetching to addresses that are not mapped to physical pages can
experience non-deterministic performance penalty. For example
specifying a NULL pointer (0L) as address for a prefetch can cause
long delays.

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’163



www.iaik.tugraz.at

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does
not fit in cache.

Use of software prefetch should be limited to memory
addresses that are managed or owned within the application context.
Prefetching to addresses that are not mapped to physical pages can
experience non-deterministic performance penalty. For example
specifying a NULL pointer (0L) as address for a prefetch can cause
long delays.

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’163



www.iaik.tugraz.at

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does
not fit in cache. Use of software prefetch should be limited to memory
addresses that are managed or owned within the application context.

Prefetching to addresses that are not mapped to physical pages can
experience non-deterministic performance penalty. For example
specifying a NULL pointer (0L) as address for a prefetch can cause
long delays.

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’163



www.iaik.tugraz.at

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does
not fit in cache. Use of software prefetch should be limited to memory
addresses that are managed or owned within the application context.
Prefetching to addresses that are not mapped to physical pages can
experience non-deterministic performance penalty.

For example
specifying a NULL pointer (0L) as address for a prefetch can cause
long delays.

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’163



www.iaik.tugraz.at

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does
not fit in cache. Use of software prefetch should be limited to memory
addresses that are managed or owned within the application context.
Prefetching to addresses that are not mapped to physical pages can
experience non-deterministic performance penalty. For example
specifying a NULL pointer (0L) as address for a prefetch can cause
long delays.

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’163



www.iaik.tugraz.at

CPU Caches

Memory (DRAM) is slow compared to the CPU

buffer frequently used memory

every memory reference goes through the cache

based on physical addresses

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’164



www.iaik.tugraz.at

Memory Access Latency

50 100 150 200 250 300 350 400

101

103

105

107

Access time in cycles

N
um

be
ro

fa
cc

es
se

s

cache hits cache misses

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’165



www.iaik.tugraz.at

Unprivileged cache maintainance

Optimize cache usage:

prefetch: suggest CPU to load data into cache

clflush: throw out data from all caches

... based on virtual addresses

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’166



www.iaik.tugraz.at

Software prefetching

prefetch instructions are somewhat unusual

hints – can be ignored by the CPU

do not check privileges or cause exceptions

but they do need to translate virtual to physical

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’167



www.iaik.tugraz.at

Kernel must be mapped in every address space

Today’s operating systems:
Shared address space

User memory Kernel memory
0 −1

context switch

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’168



www.iaik.tugraz.at

Address translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)
48-bit virtual address

CR3 PML4
PML4E 0
PML4E 1

···
#PML4I
···

PML4E 511

PDPT
PDPTE 0
PDPTE 1

···
#PDPTI
···

PDPTE 511

Page Directory
PDE 0
PDE 1

···
PDE #PDI

···
PDE 511

Page Table
PTE 0
PTE 1

···
PTE #PTI

···
PTE 511

4 KiB Page
Byte 0
Byte 1

···
Offset

···
Byte 4095

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’169



www.iaik.tugraz.at

Address Translation Caches

Core 0

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Core 1

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Page table structures in
system memory (DRAM)

Lookup
direction

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1610



www.iaik.tugraz.at

Address Space Layout Randomization (ASLR)

Process A

0 −1

Process B

0 −1

Process C

0 −1

Same library – different offset!

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1611



www.iaik.tugraz.at

Address Space Layout Randomization (ASLR)

Process A

0 −1

Process B

0 −1

Process C

0 −1

Same library – different offset!

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1611



www.iaik.tugraz.at

Kernel Address Space Layout Randomization (KASLR)

Process A

0 −1

Process B

0 −1

Process C

0 −1

Same driver – different offset!

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1612



www.iaik.tugraz.at

Kernel Address Space Layout Randomization (KASLR)

Process A

0 −1

Process B

0 −1

Process C

0 −1

Same driver – different offset!

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1612



www.iaik.tugraz.at

Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dire
ct

map

OS X, Linux, BSD, Xen PVM (Amazon EC2)

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1613



www.iaik.tugraz.at

Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dire
ct

map

OS X, Linux, BSD, Xen PVM (Amazon EC2)

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1613



www.iaik.tugraz.at

Translation-Level Oracle

PDPT PD PT cached P. uncached P.

200

300

400

230 246
222

181

383

Mapping level

E
xe

cu
tio

n
tim

e
in

cy
cl

es

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1614



www.iaik.tugraz.at

Address-Translation Oracle
User space Cache

Kernel space

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1615



www.iaik.tugraz.at

Address-Translation Oracle
User space Cache

Kernel space

cached

cached

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1615



www.iaik.tugraz.at

Address-Translation Oracle
User space Cache

Kernel space

flush
clflush

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1615



www.iaik.tugraz.at

Address-Translation Oracle
User space Cache

Kernel space

load

prefetch

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1615



www.iaik.tugraz.at

Address-Translation Oracle
User space Cache

Kernel space

reload (cache hit)
load

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1615



www.iaik.tugraz.at

Timing the prefetch instruction

The CPU may reorder prefetch instruction – a look at rdtscp

prefetch

rdtscp

prefetch

rdtscp

prefetch

prefetch

mfence

prefetch

mfence

prefetch

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1616



www.iaik.tugraz.at

Timing the prefetch instruction

The CPU may reorder prefetch instruction – a look at rdtscp

prefetch

rdtscp

prefetch

rdtscp

prefetch

3

3

3

prefetch

mfence

prefetch

mfence

prefetch

3

3

3

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1616



www.iaik.tugraz.at

Timing the prefetch instruction

The CPU may reorder prefetch instruction – a look at rdtscp

prefetch

rdtscp

prefetch

rdtscp

prefetch

3

3

prefetch

mfence

prefetch

mfence

prefetch

3

3

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1616



www.iaik.tugraz.at

Timing the prefetch instruction

The CPU may reorder instructions

instruction 1

cpuid

instruction 2

cpuid

instruction 3

but not over cpuid!
Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1617



www.iaik.tugraz.at

Windows 10 Memory layout

HAL, kernel, kernel drivers located bewetween

start: 0xffff 8000 0000 0000

end : 0xffff 9fff ffff ffff

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1618



www.iaik.tugraz.at

Breaking Windows KASLR

for all mapped pages (found via translation-level oracle):

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)

→ Fastest average access time is a driver page.

Full attack on Windows 10 in < 12 seconds

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1619



www.iaik.tugraz.at

Breaking Windows KASLR

for all mapped pages (found via translation-level oracle):
1. evict translation caches: Sleep() / access large memory buffer

2. perform syscall to driver
3. time prefetch(page address)

→ Fastest average access time is a driver page.

Full attack on Windows 10 in < 12 seconds

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1619



www.iaik.tugraz.at

Breaking Windows KASLR

for all mapped pages (found via translation-level oracle):
1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver

3. time prefetch(page address)

→ Fastest average access time is a driver page.

Full attack on Windows 10 in < 12 seconds

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1619



www.iaik.tugraz.at

Breaking Windows KASLR

for all mapped pages (found via translation-level oracle):
1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)

→ Fastest average access time is a driver page.

Full attack on Windows 10 in < 12 seconds

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1619



www.iaik.tugraz.at

Breaking Windows KASLR

for all mapped pages (found via translation-level oracle):
1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)

→ Fastest average access time is a driver page.

Full attack on Windows 10 in < 12 seconds

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1619



www.iaik.tugraz.at

Breaking Windows KASLR

for all mapped pages (found via translation-level oracle):
1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)

→ Fastest average access time is a driver page.

Full attack on Windows 10 in < 12 seconds

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1619



www.iaik.tugraz.at

Locate Kernel Driver (defeat KASLR)

0 4,000 8,000 12,000

90

100

110

120

Page offset in kernel driver region

A
vg

.
ex

ec
.

tim
e

[c
yc

le
s]

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1620



www.iaik.tugraz.at

Kernel exploits (10 years ago)

overwrite return address

→ jump to userspace code

overwrite stack pointer

→ switch to userspace stack

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1621



www.iaik.tugraz.at

Mitigating kernel exploits

Jump to userspace code? Nope! Hardware prevents that.

= supervisor-mode execution prevention (SMEP)

Switch to userspace stack? Nope! Hardware prevents that.

= supervisor-mode access prevention (SMAP)

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1622



www.iaik.tugraz.at

Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dire
ct

map

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1623



www.iaik.tugraz.at

Evading the mitigation

get direct-physical-map address of userspace address

→ jump/switch there

known as “ret2dir” attacks (Kemerlis et al. 2014)

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1624



www.iaik.tugraz.at

Mitigating the evasion

getting rid of direct-physical map?

Apparently not.

→ do not leak physical addresses to user

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1625



www.iaik.tugraz.at

Mitigating the evasion

getting rid of direct-physical map? Apparently not.

→ do not leak physical addresses to user

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1625



www.iaik.tugraz.at

Prefetching via direct-physical map

0 20 40 60 80 100 120 140 160 180 200 220 240
100

150

200

250

Page offset in direct-physical mapM
in

.
ac

c.
la

te
nc

y
[c

yc
le

s]

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1626



www.iaik.tugraz.at

Prefetching via direct-physical map

immediately leaks a direct-physical map address

→ no physical address necessary (compared to ret2dir)

if direct-physical map offset is known

→ leaks physical address

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1627



www.iaik.tugraz.at

Countermeasure
Today’s operating systems:

Shared address space
User memory Kernel memory

0 −1

context switch

Stronger kernel isolation:
User address space

User memory Not mapped
0 −1

Kernel address space

Not mapped Kernel memory
0 −1

context switch

sw
itch

addr.
space

Interrupt
dispatcher

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1628



www.iaik.tugraz.at

Conclusion

prefetch leaks significant information

we can locate a driver in the kernel and thus break KASLR

break SMAP/SMEP and get physical addresses

countermeasure could be implemented in software

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1629



www.iaik.tugraz.at

Prefetch Side-Channel Attacks:
Bypassing SMAP and Kernel ASLR

D. Gruss, C. Maurice, A. Fogh†, M. Lipp, S. Mangard
Graz University of Technology, † G DATA Advanced Analytics

October 25, 2016 — CCS’16

Daniel Gruss, Graz University of Technology
October 25, 2016 — CCS’1630


	Background
	Prefetch Side-Channel Attacks
	Results

