
A
u

gu
st

 2
, 2

02
1

-
G

ra
z

U
n

iv
er

si
ty

 o
f T

ec
h

n
ol

og
y

Exploiting
Microarchitectural

Optimizations
from Software

PHD DEFENSEPHD DEFENSE

MORITZ LIPPMORITZ LIPP

Moritz

Cooking

Beekeeping Side Channels

Cooking Beekeeping

Side Channels

Cooking Beekeeping Side Channels

Side Channel Attacks are Black Magic!

In my first semester as a student, . . .

. . . had to write a scientific report on side channel attacks.

So, I did some research . . .

Device

SPECIFICATION

Specification Interaction

Device

SPECIFICATION

Specification

Interaction

Device

SPECIFICATION

Specification Interaction

Everything works

as expected

No bugs

Everything works

as expected
No bugs

How can you attack this?

Information leaks through side effects

Power Consumption

Temperature Execution Time

Power Consumption Temperature

Execution Time

Power Consumption Temperature Execution Time

Observe Device

Evaluate data

Get the secrets. Easy as that!

Witchcraft! This is not for me!

Looking for a master thesis . . .

Cryptography

Tools

Secure Code

Generation

Software-based

Cache Attacks

Cryptography

Tools

Secure Code

Generation

Software-based

Cache Attacks

Cryptography

Tools

Secure Code

Generation

Software-based

Cache Attacks

Cryptography

Tools

Compiler

Extensions

Software-based

Cache Attacks

Cache Attacks on ARM

Architecture vs Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . .)

• Interface between hardware and software

• Microarchitecture is an ISA implementation

1 Moritz Lipp

Architecture vs Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . .)

• Interface between hardware and software

• Microarchitecture is an ISA implementation

1 Moritz Lipp

Architecture vs Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . .)

• Interface between hardware and software

• Microarchitecture is an ISA implementation

1 Moritz Lipp

Architecture vs Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . .)

• Interface between hardware and software

• Microarchitecture is an ISA implementation

1 Moritz Lipp

Optimizations

• Modern CPUs contain multiple microarchitectural elements

• Transparent for the programmer

• Optimize for performance, power consumption, . . .

2 Moritz Lipp

Optimizations

• Modern CPUs contain multiple microarchitectural elements

• Transparent for the programmer

• Optimize for performance, power consumption, . . .

2 Moritz Lipp

Optimizations

• Modern CPUs contain multiple microarchitectural elements

• Transparent for the programmer

• Optimize for performance, power consumption, . . .

2 Moritz Lipp

Optimizations

• Modern CPUs contain multiple microarchitectural elements

• Transparent for the programmer

• Optimize for performance, power consumption, . . .

2 Moritz Lipp

Cache

printf("%d", i);

printf("%d", i);

3 Moritz Lipp

Cache

printf("%d", i);

printf("%d", i);

Cache miss

3 Moritz Lipp

Cache

printf("%d", i);

printf("%d", i);

Cache miss
Request

3 Moritz Lipp

Cache

printf("%d", i);

printf("%d", i);

Cache miss
Request

Response

3 Moritz Lipp

Cache

i

printf("%d", i);

printf("%d", i);

Cache miss
Request

Response

3 Moritz Lipp

Cache

i

printf("%d", i);

printf("%d", i);

Cache miss

Cache hit

Request

Response

3 Moritz Lipp

Cache

i

printf("%d", i);

printf("%d", i);

Cache miss

Cache hit

Request

Response

DRAM access,

slow

3 Moritz Lipp

Cache

i

printf("%d", i);

printf("%d", i);

Cache miss

Cache hit

Request

Response

DRAM access,

slow

No DRAM access,

much faster

3 Moritz Lipp

Caching speeds up Memory Accesses

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

1

2

3

·104

Measured access time (CPU cycles)

N
u

m
b

er
of

ac
ce

ss
es

Cache hit

Cache miss

4 Moritz Lipp

Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

5 Moritz Lipp

Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached

5 Moritz Lipp

Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

flushes

Step 2: Attacker flushes the shared cache line

5 Moritz Lipp

Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data

5 Moritz Lipp

Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker measures the access time to reload the data

5 Moritz Lipp

Cache Attacks

• Leak cryptographic keys

• Leak information on co-located virtual machines

• Monitor function calls of other applications

• Build covert communication channels

• . . .

6 Moritz Lipp

Cache Attacks

• Leak cryptographic keys

• Leak information on co-located virtual machines

• Monitor function calls of other applications

• Build covert communication channels

• . . .

6 Moritz Lipp

Cache Attacks

• Leak cryptographic keys

• Leak information on co-located virtual machines

• Monitor function calls of other applications

• Build covert communication channels

• . . .

6 Moritz Lipp

Cache Attacks

• Leak cryptographic keys

• Leak information on co-located virtual machines

• Monitor function calls of other applications

• Build covert communication channels

• . . .

6 Moritz Lipp

Side-Channel Attacks are Fun

. . . and I started a PhD

What my research is about . . .

Motivation

Abstraction

Optimizations

7 Moritz Lipp

Motivation

Abstraction Optimizations

7 Moritz Lipp

Performance Optimizations

Common Case

Make it fast

HANDLING

CORNER CASE

Corner Case

Make sure to handle it

8 Moritz Lipp

Performance Optimizations

Common Case

Make it fast

HANDLING

CORNER CASE

Corner Case

Make sure to handle it

8 Moritz Lipp

Motivation

Understand Inner Workings

Security Implications

9 Moritz Lipp

Motivation

Understand Inner Workings Security Implications

9 Moritz Lipp

Properties

Software-only

No Physical Access required

Misuse Interfaces

Trigger Corner Cases

10 Moritz Lipp

Properties

Software-only

No Physical Access required

Misuse Interfaces

Trigger Corner Cases

10 Moritz Lipp

Contribution

Advance the state of the art of microarchitectural attacks and

defenses.

• Discovering transient-execution attacks.

• Identify previously unknown attack vectors.

• Exploring if different existing attacks can be mounted

remotely.

• Combining traditional physical side-channel analysis with

modern software-based microarchitectural attack techniques.

• Giving new insights into efficiently mitigating attacks.

11 Moritz Lipp

Contribution

Advance the state of the art of microarchitectural attacks and

defenses.

• Discovering transient-execution attacks.

• Identify previously unknown attack vectors.

• Exploring if different existing attacks can be mounted

remotely.

• Combining traditional physical side-channel analysis with

modern software-based microarchitectural attack techniques.

• Giving new insights into efficiently mitigating attacks.

11 Moritz Lipp

Contribution

Advance the state of the art of microarchitectural attacks and

defenses.

• Discovering transient-execution attacks.

• Identify previously unknown attack vectors.

• Exploring if different existing attacks can be mounted

remotely.

• Combining traditional physical side-channel analysis with

modern software-based microarchitectural attack techniques.

• Giving new insights into efficiently mitigating attacks.

11 Moritz Lipp

Contribution

Advance the state of the art of microarchitectural attacks and

defenses.

• Discovering transient-execution attacks.

• Identify previously unknown attack vectors.

• Exploring if different existing attacks can be mounted

remotely.

• Combining traditional physical side-channel analysis with

modern software-based microarchitectural attack techniques.

• Giving new insights into efficiently mitigating attacks.

11 Moritz Lipp

Contribution

Advance the state of the art of microarchitectural attacks and

defenses.

• Discovering transient-execution attacks.

• Identify previously unknown attack vectors.

• Exploring if different existing attacks can be mounted

remotely.

• Combining traditional physical side-channel analysis with

modern software-based microarchitectural attack techniques.

• Giving new insights into efficiently mitigating attacks.

11 Moritz Lipp

Way Prediction

Set-Associative Caches

0 16 17 25 26 31

Index OffsetAddress

Cache

12 Moritz Lipp

Set-Associative Caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address

12 Moritz Lipp

Set-Associative Caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address

Several ways per set

12 Moritz Lipp

Set-Associative Caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

12 Moritz Lipp

Way Prediction

• In a set-associative cache, bits in the address determine in

which set the cache line is located.

• With an n-way cache, n possible entries need to be checked.

• Using way prediction [4], one entry is predicted

• Correct prediction: Access completed

• Incorrect prediction: Perform associate check

13 Moritz Lipp

Way Prediction

• In a set-associative cache, bits in the address determine in

which set the cache line is located.

• With an n-way cache, n possible entries need to be checked.

• Using way prediction [4], one entry is predicted

• Correct prediction: Access completed

• Incorrect prediction: Perform associate check

13 Moritz Lipp

Way Prediction

• In a set-associative cache, bits in the address determine in

which set the cache line is located.

• With an n-way cache, n possible entries need to be checked.

• Using way prediction [4], one entry is predicted

• Correct prediction: Access completed

• Incorrect prediction: Perform associate check

13 Moritz Lipp

AMD Way Predictor

µTag µTag

Way 1 Way n

. . .Set

= =

VA

H
as

h

µTag

Early MissWay Prediction

L1D L2

• Introduced with the AMD Bulldozer

microarchitecture

• Every cache line in the L1D is tagged

with a µTag

• Predicts the cache way based on this
µTag

• Saving power and reduces bank

conflicts

• No match for µTag, detect early miss

and issue L2 request

14 Moritz Lipp

AMD Way Predictor

µTag µTag

Way 1 Way n

. . .Set

= =

VA

H
as

h

µTag

Early MissWay Prediction

L1D L2

• Introduced with the AMD Bulldozer

microarchitecture

• Every cache line in the L1D is tagged

with a µTag

• Predicts the cache way based on this
µTag

• Saving power and reduces bank

conflicts

• No match for µTag, detect early miss

and issue L2 request

14 Moritz Lipp

AMD Way Predictor

µTag µTag

Way 1 Way n

. . .Set

= =

VA

H
as

h

µTag

Early MissWay Prediction

L1D L2

• Introduced with the AMD Bulldozer

microarchitecture

• Every cache line in the L1D is tagged

with a µTag

• Predicts the cache way based on this
µTag

• Saving power and reduces bank

conflicts

• No match for µTag, detect early miss

and issue L2 request

14 Moritz Lipp

AMD Way Predictor

µTag µTag

Way 1 Way n

. . .Set

= =

VA

H
as

h

µTag

Early MissWay Prediction

L1D L2

• Introduced with the AMD Bulldozer

microarchitecture

• Every cache line in the L1D is tagged

with a µTag

• Predicts the cache way based on this
µTag

• Saving power and reduces bank

conflicts

• No match for µTag, detect early miss

and issue L2 request

14 Moritz Lipp

AMD Way Predictor

• Two different virtual addresses with the same µTag but

different physical addresses will conflict

15 Moritz Lipp

Hash Function

• L1D way predictor computes a hash (µTag) from the virtual

address

• This hash function is not documented

16 Moritz Lipp

Hash Function

• L1D way predictor computes a hash (µTag) from the virtual

address

• This hash function is not documented

16 Moritz Lipp

Recovering the Hash Function

• Rely on µTag collisions to reverse-engineer the hash function

• Pick two random virtual addresses mapping to the same cache

set

• Access them repeatedly

• If they have the same µTag:

• Increased access time

• Increased number of performance counter for L1 misses

17 Moritz Lipp

Recovering the Hash Function

• Rely on µTag collisions to reverse-engineer the hash function

• Pick two random virtual addresses mapping to the same cache

set

• Access them repeatedly

• If they have the same µTag:

• Increased access time

• Increased number of performance counter for L1 misses

17 Moritz Lipp

Recovering the Hash Function

• Rely on µTag collisions to reverse-engineer the hash function

• Pick two random virtual addresses mapping to the same cache

set

• Access them repeatedly

• If they have the same µTag:

• Increased access time

• Increased number of performance counter for L1 misses

17 Moritz Lipp

Recovering the Hash Function

• Rely on µTag collisions to reverse-engineer the hash function

• Pick two random virtual addresses mapping to the same cache

set

• Access them repeatedly

• If they have the same µTag:

• Increased access time

• Increased number of performance counter for L1 misses

17 Moritz Lipp

Recovering the Hash Function

0 20 40 60 80 100 120 140 160 180 200
0

500

1,000

1,500

2,000

Access time (increments)

M
ea
su
re
m
en
ts

Non-colliding addresses

Colliding addresses

Figure 1: Measured duration of 250 alternating accesses to addresses with and without the

same µTag.

18 Moritz Lipp

Recovering the Hash Function

. . . 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 . . .

f1
f2
f3

f4
f5
f6
f7
f8

(a) Zen, Zen+, Zen 2

. . . 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 . . .

f1
f2
f3
f4
f5
f6
f7
f8

(b) Bulldozer, Piledriver, Steamroller

19 Moritz Lipp

Case Studies

Covert Channel

Break AES Break KASLR

20 Moritz Lipp

Case Studies

Covert Channel Break AES

Break KASLR

20 Moritz Lipp

Case Studies

Covert Channel Break AES Break KASLR

20 Moritz Lipp

Publication

Lipp, M., Hadžić, V., Schwarz, M., Perais, A., Maurice, C., Gruss,

D., “Take a Way: Exploring the Security Implications of AMD’s

Cache Way Predictors”. In: AsiaCCS. 2020

21 Moritz Lipp

TH

0

372

Always leaking metadata . . .

Virtual Memory

Kernel Addresses

Non-canonical Addresses

User Addresses

Virtual Address Space

22 Moritz Lipp

Building the Code

• Find something human readable, e.g., the Linux version

sudo grep linux_banner /proc/kallsyms

ffffffff81a000e0 R linux_banner

23 Moritz Lipp

Building the Code

char data = *(char*) 0xffffffff81a000e0;

printf("%c\n", data);

24 Moritz Lipp

SIG
SEGV

Invalid Access throws an Exception

Memory Isolation

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

25 Moritz Lipp

Memory Isolation

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

25 Moritz Lipp

Memory Isolation

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

25 Moritz Lipp

Paging

• CPU support virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using

page tables

26 Moritz Lipp

Paging

• CPU support virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using

page tables

26 Moritz Lipp

Paging

• CPU support virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using

page tables

26 Moritz Lipp

Address Translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

27 Moritz Lipp

Address Translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

27 Moritz Lipp

Page Table Entry

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• User/Supervisor bit defines in which privilege level the page can be accessed

28 Moritz Lipp

Loading an address

char data = *(char*) 0xffffffff81a000e0;

printf("%c\n", data);

• We try to load an inaccessible address

• Permission is checked

29 Moritz Lipp

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

30 Moritz Lipp

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

30 Moritz Lipp

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

30 Moritz Lipp

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp

Toy example

(volatile char) 0; // raise_exception ();

array [84 * 4096] = 0;

32 Moritz Lipp

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

33 Moritz Lipp

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

33 Moritz Lipp

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

33 Moritz Lipp

Building a Covert Channel

• Transfer of the microarchitectural state into an architectural

state

• Transient instruction sequence is the sender

• Receiver receives the microarchitectural state change and

deduces the secret from the state

34 Moritz Lipp

Building a Covert Channel

• Transfer of the microarchitectural state into an architectural

state

• Transient instruction sequence is the sender

• Receiver receives the microarchitectural state change and

deduces the secret from the state

34 Moritz Lipp

Building a Covert Channel

• Transfer of the microarchitectural state into an architectural

state

• Transient instruction sequence is the sender

• Receiver receives the microarchitectural state change and

deduces the secret from the state

34 Moritz Lipp

Building a Covert Channel

• Leverage techniques from cache attacks: Flush+Reload

• Transmit multiple bits at once

• 256 different byte values ⇒ access different cache line

• Not limited to the cache

35 Moritz Lipp

Building a Covert Channel

• Leverage techniques from cache attacks: Flush+Reload

• Transmit multiple bits at once

• 256 different byte values ⇒ access different cache line

• Not limited to the cache

35 Moritz Lipp

Building the Code

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

36 Moritz Lipp

Building the Code

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

36 Moritz Lipp

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

37 Moritz Lipp

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

37 Moritz Lipp

Meltdown

• Using out-of-order execution, we can read data at any address

• Entire physical memory is typically accessible through kernel

space

• Bypass the most fundamental security guarantees

• Can leak data directly, not only meta data

38 Moritz Lipp

Meltdown

• Using out-of-order execution, we can read data at any address

• Entire physical memory is typically accessible through kernel

space

• Bypass the most fundamental security guarantees

• Can leak data directly, not only meta data

38 Moritz Lipp

Meltdown

• Using out-of-order execution, we can read data at any address

• Entire physical memory is typically accessible through kernel

space

• Bypass the most fundamental security guarantees

• Can leak data directly, not only meta data

38 Moritz Lipp

Meltdown

• Using out-of-order execution, we can read data at any address

• Entire physical memory is typically accessible through kernel

space

• Bypass the most fundamental security guarantees

• Can leak data directly, not only meta data

38 Moritz Lipp

Transient-Execution Attacks

With transient-execution attacks, a new research field emerged

Meltdown Spectre Fallout

Zombieload LVI Medusa

39 Moritz Lipp

Publication

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh,

A., Horn, J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y.,

Hamburg, M., “Meltdown: Reading Kernel Memory from User

Space”. In: USENIX Security Symposium. 2018

40 Moritz Lipp

Operating System Microarchitecture

KASLR: Kernel Address Space Layout Randomization

• Many exploits rely on the knowledge of the memory location of

a certain function

• Statistical mitigation of memory corruption vulnerabilities

• Randomizing core kernel image and device drivers position at

boot time

41 Moritz Lipp

KASLR: Kernel Address Space Layout Randomization

• Many exploits rely on the knowledge of the memory location of

a certain function

• Statistical mitigation of memory corruption vulnerabilities

• Randomizing core kernel image and device drivers position at

boot time

41 Moritz Lipp

KASLR: Kernel Address Space Layout Randomization

• Many exploits rely on the knowledge of the memory location of

a certain function

• Statistical mitigation of memory corruption vulnerabilities

• Randomizing core kernel image and device drivers position at

boot time

41 Moritz Lipp

KASLR: Kernel Address Space Layout Randomization

Boot A

0 −1

Boot B

0 −1

Boot C

0 −1

• Driver is loaded to a different offset on every boot

42 Moritz Lipp

Attacks

• Double Page Fault Attack [3]

• Measuring execution time of page fault handler

• TSX Attack [5]

• Measuring execution time of TSX abort handler

• Prefetch [2]

• Execution time of prefetch instruction

43 Moritz Lipp

Prefetch Side-Channel Attack

PDPTE PDE PTE Page

(cached)

Page

(uncached)

200

300

400

500

600

241 241 237 212

515

Mapping level

E
xe

cu
ti

on
ti

m
e

in
cy

cl
es

44 Moritz Lipp

Idea

• Stronger Kernel Address Isolation: Separate kernel space and

user space

context switch

User memory not mapped

0 −1
context switch

SMAP + SMEP Kernel memory

0 −1

switch address space

45 Moritz Lipp

Idea

• Every process has two address spaces:

• Kernel Address Space: Kernel mapped, user space mapped

and protected with SMAP and SMEP

• Shadow Address Space: User space mapped, Kernel not

mapped

• Switching between the address space:

• Update CR3 with corresponding PML4

46 Moritz Lipp

Idea

• Every process has two address spaces:

• Kernel Address Space: Kernel mapped, user space mapped

and protected with SMAP and SMEP

• Shadow Address Space: User space mapped, Kernel not

mapped

• Switching between the address space:

• Update CR3 with corresponding PML4

46 Moritz Lipp

Idea

• Every process has two address spaces:

• Kernel Address Space: Kernel mapped, user space mapped

and protected with SMAP and SMEP

• Shadow Address Space: User space mapped, Kernel not

mapped

• Switching between the address space:

• Update CR3 with corresponding PML4

46 Moritz Lipp

Idea

• Every process has two address spaces:

• Kernel Address Space: Kernel mapped, user space mapped

and protected with SMAP and SMEP

• Shadow Address Space: User space mapped, Kernel not

mapped

• Switching between the address space:

• Update CR3 with corresponding PML4

46 Moritz Lipp

Idea

• Every process has two address spaces:

• Kernel Address Space: Kernel mapped, user space mapped

and protected with SMAP and SMEP

• Shadow Address Space: User space mapped, Kernel not

mapped

• Switching between the address space:

• Update CR3 with corresponding PML4

46 Moritz Lipp

Prefetch Side-Channel Attack

PDPTE PDE PTE Page

(cached)

Page

(uncached)

200

300

400

500

600

241 241 237 212

515

241 241 241 241 241

Mapping level

E
xe

cu
ti

on
ti

m
e

in
cy

cl
es

default

47 Moritz Lipp

Prefetch Side-Channel Attack

PDPTE PDE PTE Page

(cached)

Page

(uncached)

200

300

400

500

600

241 241 237 212

515

241 241 241 241 241

Mapping level

E
xe

cu
ti

on
ti

m
e

in
cy

cl
es

default
KAISER

47 Moritz Lipp

Bonus

• For Meltdown, kernel addresses in user space are a problem

• With KAISER, these mappings are gone

• Inadvertently defeats Meltdown as well

• Incorporated to Linux, Apple and Windows

48 Moritz Lipp

Bonus

• For Meltdown, kernel addresses in user space are a problem

• With KAISER, these mappings are gone

• Inadvertently defeats Meltdown as well

• Incorporated to Linux, Apple and Windows

48 Moritz Lipp

Bonus

• For Meltdown, kernel addresses in user space are a problem

• With KAISER, these mappings are gone

• Inadvertently defeats Meltdown as well

• Incorporated to Linux, Apple and Windows

48 Moritz Lipp

Publication

Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C.,

Mangard, S., “KASLR is Dead: Long Live KASLR”. In: ESSoS.

2017

49 Moritz Lipp

Software-based Power Side Channel Attacks

Intel RAPL

• Need for Platform Thermal Management, Platform Power

Limiting, Power/Performance Budgeting

• Intel Running Average Power Limit (RAPL) provides . . .

Power Limiting Accurate Energy Reading

50 Moritz Lipp

Intel RAPL

• Need for Platform Thermal Management, Platform Power

Limiting, Power/Performance Budgeting

• Intel Running Average Power Limit (RAPL) provides . . .

Power Limiting Accurate Energy Reading

50 Moritz Lipp

Intel RAPL

• Need for Platform Thermal Management, Platform Power

Limiting, Power/Performance Budgeting

• Intel Running Average Power Limit (RAPL) provides . . .

Power Limiting

Accurate Energy Reading

50 Moritz Lipp

Intel RAPL

• Need for Platform Thermal Management, Platform Power

Limiting, Power/Performance Budgeting

• Intel Running Average Power Limit (RAPL) provides . . .

Power Limiting Accurate Energy Reading

50 Moritz Lipp

Intel RAPL

• On Linux, counters can be accessed using the powercap

framework

/sys/devices/virtual/powercap/intel-rapl

• On macOS and Windows, a driver from Intel needs to be

installed

51 Moritz Lipp

Intel RAPL

• On Linux, counters can be accessed using the powercap

framework

/sys/devices/virtual/powercap/intel-rapl

• On macOS and Windows, a driver from Intel needs to be

installed

51 Moritz Lipp

Distinguishing Instructions

• Measure the energy consumption of different instructions

1,050 1,100 1,150 1,200 1,250

500

1,000

Energy [pJ]

N
u
m
b
er

o
f
ca
se
s

clflush

mov r64,mem

fscale

rdrand

rdtsc

52 Moritz Lipp

Distinguishing Operands

• Measure the energy consumption of different operands

0.234 0.236 0.238 0.240 0.242 0.244 0.246 0.248 0.250 0.252
0

50

100

150

Energy [J]

D
en
si
ty

0x00 0xFF

0x0F 0x3F

0x03

53 Moritz Lipp

Distinguishing Data

• Measure the energy consumption of different load values

0 50 100 150 200 250

−2 · 105

0

2 · 105

Byte-value (ordered by HW)

E
n
er
g
y
[n
J]

54 Moritz Lipp

Distinguishing Load Targets

• Measure the energy consumption of different load targets

400 420 440 460 480 500 520 540 560 580

0

500

1,000

Energy [nJ]

N
u
m
b
er

o
f
ca
se
s

cache hit cache miss

55 Moritz Lipp

Case Studies

Covert Channel

Break AES-NI Break KASLR

56 Moritz Lipp

Case Studies

Covert Channel Break AES-NI

Break KASLR

56 Moritz Lipp

Case Studies

Covert Channel Break AES-NI Break KASLR

56 Moritz Lipp

SGX Step

• Combine Intel RAPL with SGX-step

• Measure the energy consumption of single instructions

57 Moritz Lipp

SGX Step

• Combine Intel RAPL with SGX-step

• Measure the energy consumption of single instructions

57 Moritz Lipp

RSA Toy Cipher

1.500

1.600

1.700
P
ow

er

[W
]

PKG

1.646

1.648

1.650

P
ow

er

[W
]

PP0

0.650

0.660

0.670

P
ow

er

[W
]

DRAM

62 68 74 80 86 92 98 104 110 116 122

841.7
841.8
841.8

Instruction

V
o
lt
ag

e

[m
V
] VCORE

58 Moritz Lipp

Publication

Lipp, M., Kogler, A., Oswald, D., Schwarz, M., Easdon, C., Canella,

C., Gruss, D., “PLATYPUS: Software-based Power Side-Channel

Attacks on x86”. In: IEEE S&P. 2021

59 Moritz Lipp

Interrupt-based Side Channel from JavaScript

Motivation

• Acquire accurate timestamps of keystrokes for input sequences

• Depend on bigrams, syllables, words, keyboard layout and

typing experience

• Exploit timing characteristics to learn information about the
user or the input

• Infer typed sentences

• Recover passphrases

60 Moritz Lipp

Motivation

• Acquire accurate timestamps of keystrokes for input sequences

• Depend on bigrams, syllables, words, keyboard layout and

typing experience

• Exploit timing characteristics to learn information about the
user or the input

• Infer typed sentences

• Recover passphrases

60 Moritz Lipp

Motivation

• Acquire accurate timestamps of keystrokes for input sequences

• Depend on bigrams, syllables, words, keyboard layout and

typing experience

• Exploit timing characteristics to learn information about the
user or the input

• Infer typed sentences

• Recover passphrases

60 Moritz Lipp

Interrupt-timing Attacks

• Idea: Continuously acquire a high-resolution timestamp and

monitor differences between subsequent timestamps [11]

61 Moritz Lipp

Interrupt-timing Attacks

• Idea: Continuously acquire a high-resolution timestamp and

monitor differences between subsequent timestamps [11]

61 Moritz Lipp

Interrupt-timing Attacks

• Look at how much time has passed since the last measurement

• Significant differences occur when the process is interrupted

• More time the operating system consumes to handle the

interrupt

→ higher timing difference

62 Moritz Lipp

Interrupt-timing Attacks

• Look at how much time has passed since the last measurement

• Significant differences occur when the process is interrupted

• More time the operating system consumes to handle the

interrupt

→ higher timing difference

62 Moritz Lipp

Interrupt-timing Attacks

• Look at how much time has passed since the last measurement

• Significant differences occur when the process is interrupted

• More time the operating system consumes to handle the

interrupt

→ higher timing difference

62 Moritz Lipp

Case Studies

Covert Channel

User and URL Classification Touchscreen Interaction

63 Moritz Lipp

Case Studies

Covert Channel User and URL Classification

Touchscreen Interaction

63 Moritz Lipp

Case Studies

Covert Channel User and URL Classification Touchscreen Interaction

63 Moritz Lipp

PIN input

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

5,000

10,000

screen off

redraw

slide 1 2 3 4

redraw

tap

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Figure 3: Keystroke timing attack running in the Firefox browser on the Xiaomi Redmi Note

3. While the user locked the screen, the application still detects keystrokes as long as it is

executed on the last used tab.

64 Moritz Lipp

Publication

Lipp, M., Gruss, D., Schwarz, M., Bidner, D., Maurice, C.-m.-t.-n.,

Mangard, S., “Practical Keystroke Timing Attacks in Sandboxed

JavaScript”. In: ESORICS. 2017

65 Moritz Lipp

Nethammer: Remote Rowhammer

Remote Rowhammer Attack

• Rowhammer always required local code execution.

• Is Rowhammer possible without any attacker-controlled code?

66 Moritz Lipp

Nethammer

• Sending as many small UDP packets as possible, triggering

memory accesses

• Artificial setup: bit flips every 350 ms.

• With Intel CAT, up to 25 bit flips in 15 minutes.

67 Moritz Lipp

Results

• Automatic classification of memory-controller policies

• Showed that TRR is insufficient in mitigating Rowhammer

attacks

68 Moritz Lipp

Publication

Lipp, M., Schwarz, M., Raab, L., Lamster, L., Aga, M. T., Maurice,

C., Gruss, D., “Nethammer: Inducing Rowhammer Faults through

Network Requests”. In: SILM Workshop. 2020

69 Moritz Lipp

My PhD in Numbers

23 Publications

(14 Tier 1, 2 Journals)

7 First Author

(3 Tier 1, 1 Journal)

4 under submission

-

32 Talks

-

10 Awards + 11 CVEs

-

70 Moritz Lipp

23 Publications

(14 Tier 1, 2 Journals)

7 First Author

(3 Tier 1, 1 Journal)

4 under submission

-

32 Talks

-

10 Awards + 11 CVEs

-

70 Moritz Lipp

23 Publications

(14 Tier 1, 2 Journals)

7 First Author

(3 Tier 1, 1 Journal)

4 under submission

-

32 Talks

-

10 Awards + 11 CVEs

-

70 Moritz Lipp

23 Publications

(14 Tier 1, 2 Journals)

7 First Author

(3 Tier 1, 1 Journal)

4 under submission

-

32 Talks

-

10 Awards + 11 CVEs

-

70 Moritz Lipp

23 Publications

(14 Tier 1, 2 Journals)

7 First Author

(3 Tier 1, 1 Journal)

4 under submission

-

32 Talks

-

10 Awards + 11 CVEs

-

70 Moritz Lipp

Met, worked and made friends with many

incredible kind and talented people

Conclusion

Conclusion

• Demonstrate how microarchitectural optimizations can be

exploited from software

• Typically require complex mitigations coming with a

non-negligible performance impact

• Require rethinking on a microarchitectural level

71 Moritz Lipp

. . . or in other words . . .

Cooking

Beekeeping Side Channels

Cooking Beekeeping

Side Channels

Cooking Beekeeping Side Channels

A
u

gu
st

 2
, 2

02
1

-
G

ra
z

U
n

iv
er

si
ty

 o
f T

ec
h

n
ol

og
y

Exploiting
Microarchitectural

Optimizations
from Software

PHD DEFENSEPHD DEFENSE

MORITZ LIPPMORITZ LIPP

References i

[1] Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., Mangard, S.,

“KASLR is Dead: Long Live KASLR”. In: ESSoS. 2017.

[2] Gruss, D., Maurice, C., Fogh, A., Lipp, M., Mangard, S., “Prefetch

Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. In: ACM CCS. 2016.

[3] Hund, R., Willems, C., Holz, T., “Practical Timing Side Channel Attacks against

Kernel Space ASLR”. In: IEEE S&P. 2013.

[4] Inoue, K., Ishihara, T., Murakami, K., “Way-predicting set-associative cache for

high performance and low energy consumption”. In: Symposium on Low Power

Electronics and Design. 1999.

72 Moritz Lipp

References ii

[5] Jang, Y., Lee, S., Kim, T., “Breaking Kernel Address Space Layout

Randomization with Intel TSX”. In: ACM CCS. 2016.

[6] Lipp, M., Gruss, D., Schwarz, M., Bidner, D., Maurice, C.-m.-t.-n., Mangard,

S., “Practical Keystroke Timing Attacks in Sandboxed JavaScript”. In:

ESORICS. 2017.

[7] Lipp, M., Hadžić, V., Schwarz, M., Perais, A., Maurice, C., Gruss, D., “Take a

Way: Exploring the Security Implications of AMD’s Cache Way Predictors”. In:

AsiaCCS. 2020.

[8] Lipp, M., Kogler, A., Oswald, D., Schwarz, M., Easdon, C., Canella, C., Gruss,

D., “PLATYPUS: Software-based Power Side-Channel Attacks on x86”. In: IEEE

S&P. 2021.

73 Moritz Lipp

References iii

[9] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J.,

Mangard, S., Kocher, P., Genkin, D., Yarom, Y., Hamburg, M., “Meltdown:

Reading Kernel Memory from User Space”. In: USENIX Security Symposium.

2018.

[10] Lipp, M., Schwarz, M., Raab, L., Lamster, L., Aga, M. T., Maurice, C., Gruss,

D., “Nethammer: Inducing Rowhammer Faults through Network Requests”. In:

SILM Workshop. 2020.

[11] Schwarz, M., Lipp, M., Gruss, D., Weiser, S., Maurice, C.-m.-t.-n., Spreitzer,

R., Mangard, S., “KeyDrown: Eliminating Software-Based Keystroke Timing

Side-Channel Attacks”. In: NDSS. 2018.

74 Moritz Lipp

References iv

[12] Tatar, A., Krishnan, R., Athanasopoulos, E., Giuffrida, C., Bos, H., Razavi, K.,

“Throwhammer: Rowhammer Attacks over the Network and Defenses”. In:

USENIX ATC. 2018.

75 Moritz Lipp

