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Side Channel Attacks are Black Magic!



In my first semester as a student, . . .



. . . had to write a scientific report on side channel attacks.



So, I did some research . . .
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No bugs
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How can you attack this?



Information leaks through side effects
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Observe Device



Evaluate data



Get the secrets. Easy as that!



Witchcraft! This is not for me!



Looking for a master thesis . . .
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Cryptography

Tools

Compiler

Extensions

Software-based

Cache Attacks



Cache Attacks on ARM



Architecture vs Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, . . . )

• Interface between hardware and software

• Microarchitecture is an ISA implementation
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Optimizations

• Modern CPUs contain multiple microarchitectural elements

• Transparent for the programmer

• Optimize for performance, power consumption, . . .
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Cache

printf("%d", i);

printf("%d", i);
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printf("%d", i);

printf("%d", i);

Cache miss

Cache hit
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Response

DRAM access,

slow

No DRAM access,

much faster
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Caching speeds up Memory Accesses
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Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
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Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data
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Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker measures the access time to reload the data
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Cache Attacks

• Leak cryptographic keys

• Leak information on co-located virtual machines

• Monitor function calls of other applications

• Build covert communication channels

• . . .
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Side-Channel Attacks are Fun



. . . and I started a PhD



What my research is about . . .



Motivation

Abstraction

Optimizations
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Performance Optimizations

Common Case

Make it fast

HANDLING

CORNER CASE

Corner Case

Make sure to handle it
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Motivation

Understand Inner Workings

Security Implications
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Properties

Software-only

No Physical Access required

Misuse Interfaces

Trigger Corner Cases
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Contribution

Advance the state of the art of microarchitectural attacks and

defenses.

• Discovering transient-execution attacks.

• Identify previously unknown attack vectors.

• Exploring if different existing attacks can be mounted

remotely.

• Combining traditional physical side-channel analysis with

modern software-based microarchitectural attack techniques.

• Giving new insights into efficiently mitigating attacks.
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Set-Associative Caches
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Set-Associative Caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set
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Way Prediction

• In a set-associative cache, bits in the address determine in

which set the cache line is located.

• With an n-way cache, n possible entries need to be checked.

• Using way prediction [4], one entry is predicted

• Correct prediction: Access completed

• Incorrect prediction: Perform associate check
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AMD Way Predictor

µTag µTag

Way 1 Way n

. . .Set

= =

VA
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h

µTag

Early MissWay Prediction

L1D L2

• Introduced with the AMD Bulldozer

microarchitecture

• Every cache line in the L1D is tagged

with a µTag

• Predicts the cache way based on this
µTag

• Saving power and reduces bank

conflicts

• No match for µTag, detect early miss

and issue L2 request
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AMD Way Predictor

• Two different virtual addresses with the same µTag but

different physical addresses will conflict
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Hash Function

• L1D way predictor computes a hash (µTag) from the virtual

address

• This hash function is not documented
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Recovering the Hash Function

• Rely on µTag collisions to reverse-engineer the hash function

• Pick two random virtual addresses mapping to the same cache

set

• Access them repeatedly

• If they have the same µTag:

• Increased access time

• Increased number of performance counter for L1 misses
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Recovering the Hash Function
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Figure 1: Measured duration of 250 alternating accesses to addresses with and without the

same µTag.
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Recovering the Hash Function

. . . 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 . . .

f1
f2
f3

f4
f5
f6
f7
f8

(a) Zen, Zen+, Zen 2

. . . 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 . . .

f1
f2
f3
f4
f5
f6
f7
f8

(b) Bulldozer, Piledriver, Steamroller
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Case Studies

Covert Channel

Break AES Break KASLR
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Publication

Lipp, M., Hadžić, V., Schwarz, M., Perais, A., Maurice, C., Gruss,

D., “Take a Way: Exploring the Security Implications of AMD’s

Cache Way Predictors”. In: AsiaCCS. 2020
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Always leaking metadata . . .



Virtual Memory

Kernel Addresses

Non-canonical Addresses

User Addresses

Virtual Address Space
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Building the Code

• Find something human readable, e.g., the Linux version

# sudo grep linux_banner /proc/kallsyms

ffffffff81a000e0 R linux_banner
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Building the Code

char data = *(char*) 0xffffffff81a000e0;

printf("%c\n", data);
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SIG
SEGV

Invalid Access throws an Exception



Memory Isolation

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel
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Paging

• CPU support virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using

page tables
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Address Translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095
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Page Table Entry

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• User/Supervisor bit defines in which privilege level the page can be accessed
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Loading an address

char data = *(char*) 0xffffffff81a000e0;

printf("%c\n", data);

• We try to load an inaccessible address

• Permission is checked

29 Moritz Lipp
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31 Moritz Lipp



Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp



Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp



Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp



Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp



Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp



Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

31 Moritz Lipp



Toy example

*( volatile char*) 0; // raise_exception ();

array [84 * 4096] = 0;
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Building the Code

• Flush+Reload over all pages of the array
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• “Unreachable” code line was actually executed

• Exception was only thrown afterwards
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Building a Covert Channel

• Transfer of the microarchitectural state into an architectural

state

• Transient instruction sequence is the sender

• Receiver receives the microarchitectural state change and

deduces the secret from the state
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Building a Covert Channel

• Leverage techniques from cache attacks: Flush+Reload

• Transmit multiple bits at once

• 256 different byte values ⇒ access different cache line

• Not limited to the cache
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Building the Code

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached
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Meltdown

• Using out-of-order execution, we can read data at any address

• Entire physical memory is typically accessible through kernel

space

• Bypass the most fundamental security guarantees

• Can leak data directly, not only meta data
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Transient-Execution Attacks

With transient-execution attacks, a new research field emerged

Meltdown Spectre Fallout

Zombieload LVI Medusa
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Publication

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh,

A., Horn, J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y.,

Hamburg, M., “Meltdown: Reading Kernel Memory from User

Space”. In: USENIX Security Symposium. 2018
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Operating System Microarchitecture



KASLR: Kernel Address Space Layout Randomization

• Many exploits rely on the knowledge of the memory location of

a certain function

• Statistical mitigation of memory corruption vulnerabilities

• Randomizing core kernel image and device drivers position at

boot time
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KASLR: Kernel Address Space Layout Randomization

Boot A

0 −1

Boot B

0 −1

Boot C

0 −1

• Driver is loaded to a different offset on every boot
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Attacks

• Double Page Fault Attack [3]

• Measuring execution time of page fault handler

• TSX Attack [5]

• Measuring execution time of TSX abort handler

• Prefetch [2]

• Execution time of prefetch instruction
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Prefetch Side-Channel Attack
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Idea

• Stronger Kernel Address Isolation: Separate kernel space and

user space

context switch

User memory not mapped

0 −1
context switch

SMAP + SMEP Kernel memory

0 −1

switch address space

45 Moritz Lipp



Idea

• Every process has two address spaces:

• Kernel Address Space: Kernel mapped, user space mapped

and protected with SMAP and SMEP

• Shadow Address Space: User space mapped, Kernel not

mapped

• Switching between the address space:

• Update CR3 with corresponding PML4
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Bonus

• For Meltdown, kernel addresses in user space are a problem

• With KAISER, these mappings are gone

• Inadvertently defeats Meltdown as well

• Incorporated to Linux, Apple and Windows

48 Moritz Lipp



Bonus

• For Meltdown, kernel addresses in user space are a problem

• With KAISER, these mappings are gone

• Inadvertently defeats Meltdown as well

• Incorporated to Linux, Apple and Windows

48 Moritz Lipp



Bonus

• For Meltdown, kernel addresses in user space are a problem

• With KAISER, these mappings are gone

• Inadvertently defeats Meltdown as well

• Incorporated to Linux, Apple and Windows

48 Moritz Lipp



Publication

Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C.,

Mangard, S., “KASLR is Dead: Long Live KASLR”. In: ESSoS.

2017
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Software-based Power Side Channel Attacks



Intel RAPL

• Need for Platform Thermal Management, Platform Power

Limiting, Power/Performance Budgeting

• Intel Running Average Power Limit (RAPL) provides . . .

Power Limiting Accurate Energy Reading
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Intel RAPL

• On Linux, counters can be accessed using the powercap

framework

/sys/devices/virtual/powercap/intel-rapl

• On macOS and Windows, a driver from Intel needs to be

installed
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Distinguishing Instructions

• Measure the energy consumption of different instructions
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Distinguishing Operands

• Measure the energy consumption of different operands
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Distinguishing Data

• Measure the energy consumption of different load values
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Distinguishing Load Targets

• Measure the energy consumption of different load targets
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Case Studies

Covert Channel

Break AES-NI Break KASLR
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SGX Step

• Combine Intel RAPL with SGX-step

• Measure the energy consumption of single instructions
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RSA Toy Cipher
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Publication

Lipp, M., Kogler, A., Oswald, D., Schwarz, M., Easdon, C., Canella,

C., Gruss, D., “PLATYPUS: Software-based Power Side-Channel

Attacks on x86”. In: IEEE S&P. 2021
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Interrupt-based Side Channel from JavaScript



Motivation

• Acquire accurate timestamps of keystrokes for input sequences

• Depend on bigrams, syllables, words, keyboard layout and

typing experience

• Exploit timing characteristics to learn information about the
user or the input

• Infer typed sentences

• Recover passphrases

60 Moritz Lipp



Motivation

• Acquire accurate timestamps of keystrokes for input sequences

• Depend on bigrams, syllables, words, keyboard layout and

typing experience

• Exploit timing characteristics to learn information about the
user or the input

• Infer typed sentences

• Recover passphrases

60 Moritz Lipp



Motivation

• Acquire accurate timestamps of keystrokes for input sequences

• Depend on bigrams, syllables, words, keyboard layout and

typing experience

• Exploit timing characteristics to learn information about the
user or the input

• Infer typed sentences

• Recover passphrases

60 Moritz Lipp



Interrupt-timing Attacks

• Idea: Continuously acquire a high-resolution timestamp and

monitor differences between subsequent timestamps [11]
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Interrupt-timing Attacks

• Look at how much time has passed since the last measurement

• Significant differences occur when the process is interrupted

• More time the operating system consumes to handle the

interrupt

→ higher timing difference
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Case Studies

Covert Channel

User and URL Classification Touchscreen Interaction
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PIN input
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Figure 3: Keystroke timing attack running in the Firefox browser on the Xiaomi Redmi Note

3. While the user locked the screen, the application still detects keystrokes as long as it is

executed on the last used tab.
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Publication

Lipp, M., Gruss, D., Schwarz, M., Bidner, D., Maurice, C.-m.-t.-n.,

Mangard, S., “Practical Keystroke Timing Attacks in Sandboxed

JavaScript”. In: ESORICS. 2017
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Nethammer: Remote Rowhammer



Remote Rowhammer Attack

• Rowhammer always required local code execution.

• Is Rowhammer possible without any attacker-controlled code?

66 Moritz Lipp



Nethammer

• Sending as many small UDP packets as possible, triggering

memory accesses

• Artificial setup: bit flips every 350 ms.

• With Intel CAT, up to 25 bit flips in 15 minutes.
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Results

• Automatic classification of memory-controller policies

• Showed that TRR is insufficient in mitigating Rowhammer

attacks
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Publication

Lipp, M., Schwarz, M., Raab, L., Lamster, L., Aga, M. T., Maurice,

C., Gruss, D., “Nethammer: Inducing Rowhammer Faults through

Network Requests”. In: SILM Workshop. 2020
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My PhD in Numbers



23 Publications

(14 Tier 1, 2 Journals)

7 First Author

(3 Tier 1, 1 Journal)

4 under submission

-

32 Talks

-

10 Awards + 11 CVEs

-
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Met, worked and made friends with many

incredible kind and talented people



Conclusion



Conclusion

• Demonstrate how microarchitectural optimizations can be

exploited from software

• Typically require complex mitigations coming with a

non-negligible performance impact

• Require rethinking on a microarchitectural level
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. . . or in other words . . .
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