
Practical Keystroke Timing Attacks in Sandboxed
JavaScript

M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard
Sep 11, 2017—ESORICS’17

Graz University of Technology



Motivation www.tugraz.at

• Keystroke timing attacks infer typed words, passphrases or create user fingerprints

• Typically require native code execution

• First JavaScript-based keystroke timing attack
• Build classifiers to detect visited websites or to identify users and a covert channel
• Runs in the background and can monitor on other tabs and applications

2 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Motivation www.tugraz.at

• Keystroke timing attacks infer typed words, passphrases or create user fingerprints
• Typically require native code execution

• First JavaScript-based keystroke timing attack
• Build classifiers to detect visited websites or to identify users and a covert channel
• Runs in the background and can monitor on other tabs and applications

2 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Motivation www.tugraz.at

• Keystroke timing attacks infer typed words, passphrases or create user fingerprints
• Typically require native code execution

• First JavaScript-based keystroke timing attack

• Build classifiers to detect visited websites or to identify users and a covert channel
• Runs in the background and can monitor on other tabs and applications

2 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Motivation www.tugraz.at

• Keystroke timing attacks infer typed words, passphrases or create user fingerprints
• Typically require native code execution

• First JavaScript-based keystroke timing attack
• Build classifiers to detect visited websites or to identify users and a covert channel

• Runs in the background and can monitor on other tabs and applications

2 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Motivation www.tugraz.at

• Keystroke timing attacks infer typed words, passphrases or create user fingerprints
• Typically require native code execution

• First JavaScript-based keystroke timing attack
• Build classifiers to detect visited websites or to identify users and a covert channel
• Runs in the background and can monitor on other tabs and applications

2 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Background



Keystroke Timing Attacks www.tugraz.at

• Acquire accurate timestamps of keystrokes for input sequences

• Depend on bigrams, syllables, words, keyboard layout and typing experience
• Exploit timing characteristics to learn information about the user or the input

• Infer typed sentences
• Recover passphrases

3 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Keystroke Timing Attacks www.tugraz.at

• Acquire accurate timestamps of keystrokes for input sequences
• Depend on bigrams, syllables, words, keyboard layout and typing experience

• Exploit timing characteristics to learn information about the user or the input
• Infer typed sentences
• Recover passphrases

3 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Keystroke Timing Attacks www.tugraz.at

• Acquire accurate timestamps of keystrokes for input sequences
• Depend on bigrams, syllables, words, keyboard layout and typing experience
• Exploit timing characteristics to learn information about the user or the input

• Infer typed sentences
• Recover passphrases

3 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Keystroke Timing Attacks www.tugraz.at

• Many ways to obtain keystroke timings have been presented:
• SSH leaks inter-keystroke timings in interactive mode [Son+01]
• Network latency with significant traffic [Hog+01]
• Instruction and stack pointer, interrupt, network packet statistics [Zha+09]
• CPU usage [Jan+12]
• Wi-Fi Signals [Ali+15]
• /proc/interrupts [Dia+16]
• JavaScript Sensor API [Meh+16]

4 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

• Idea: Continuously acquire a high-resolution timestamp and monitor differences
between subsequent timestamps [Sch+17]

• Requires unprivileged code execution and an accurate timing source (e.g., rdtsc)

5 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

• Idea: Continuously acquire a high-resolution timestamp and monitor differences
between subsequent timestamps [Sch+17]

• Requires unprivileged code execution and an accurate timing source (e.g., rdtsc)

5 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

1 int now = rdtsc();
2 while (true) {
3 int last = now;
4 now = rdtsc();
5 if ((now - last) > threshold) {
6 reportEvent(now, now - last);
7 }
8 }

• Look at how much time has passed since the last measurement
• Significant differences occur when the process is interrupted
• More time the operating system consumes to handle the interrupt

→ higher timing difference

6 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

1 int now = rdtsc();
2 while (true) {
3 int last = now;
4 now = rdtsc();
5 if ((now - last) > threshold) {
6 reportEvent(now, now - last);
7 }
8 }

• Look at how much time has passed since the last measurement

• Significant differences occur when the process is interrupted
• More time the operating system consumes to handle the interrupt

→ higher timing difference

6 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

1 int now = rdtsc();
2 while (true) {
3 int last = now;
4 now = rdtsc();
5 if ((now - last) > threshold) {
6 reportEvent(now, now - last);
7 }
8 }

• Look at how much time has passed since the last measurement
• Significant differences occur when the process is interrupted

• More time the operating system consumes to handle the interrupt
→ higher timing difference

6 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

1 int now = rdtsc();
2 while (true) {
3 int last = now;
4 now = rdtsc();
5 if ((now - last) > threshold) {
6 reportEvent(now, now - last);
7 }
8 }

• Look at how much time has passed since the last measurement
• Significant differences occur when the process is interrupted
• More time the operating system consumes to handle the interrupt

→ higher timing difference

6 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Interrupt-timing Attacks www.tugraz.at

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

·1010

0

1

2 ·105

p a s s w o r d

Runtime [cycles]

D
elt

a
[c

yc
les

]

7 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Timing Attacks in Sandboxed JavaScript www.tugraz.at

• High Resolution Time API (performance.now)

• Utilized to mount various attacks:
• Page deduplication [Gru+15]
• Cache attacks [Ore+15]

• W3C standard now recommends a resolution of 5 µs

8 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Timing Attacks in Sandboxed JavaScript www.tugraz.at

• High Resolution Time API (performance.now)
• Utilized to mount various attacks:

• Page deduplication [Gru+15]
• Cache attacks [Ore+15]

• W3C standard now recommends a resolution of 5 µs

8 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Timing Attacks in Sandboxed JavaScript www.tugraz.at

• High Resolution Time API (performance.now)
• Utilized to mount various attacks:

• Page deduplication [Gru+15]
• Cache attacks [Ore+15]

• W3C standard now recommends a resolution of 5 µs

8 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Sandboxed Keystroke Timing
Attacks without High-Resolution
Timers



Sandboxed Keystroke Timing Attacks w/o High-Resolution Timers www.tugraz.at

• Two phases:

• Online phase: Acquire timing traces
• Offline phase: Post-processing and evaluation

9 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Sandboxed Keystroke Timing Attacks w/o High-Resolution Timers www.tugraz.at

• Two phases:
• Online phase: Acquire timing traces

• Offline phase: Post-processing and evaluation

9 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Sandboxed Keystroke Timing Attacks w/o High-Resolution Timers www.tugraz.at

• Two phases:
• Online phase: Acquire timing traces
• Offline phase: Post-processing and evaluation

9 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Online phase www.tugraz.at

• How can we mount the attack in JavaScript?

• Native instruction (rdtsc) not available
• performance.now limited resolution

• Implement a monotonic clock
• Constantly increment a value
• Number of increments is proportional to the time the function is scheduled

• Interrupt → lower increments

10 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Online phase www.tugraz.at

• How can we mount the attack in JavaScript?
• Native instruction (rdtsc) not available

• performance.now limited resolution

• Implement a monotonic clock
• Constantly increment a value
• Number of increments is proportional to the time the function is scheduled

• Interrupt → lower increments

10 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Online phase www.tugraz.at

• How can we mount the attack in JavaScript?
• Native instruction (rdtsc) not available
• performance.now limited resolution

• Implement a monotonic clock
• Constantly increment a value
• Number of increments is proportional to the time the function is scheduled

• Interrupt → lower increments

10 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Online phase www.tugraz.at

• How can we mount the attack in JavaScript?
• Native instruction (rdtsc) not available
• performance.now limited resolution

• Implement a monotonic clock

• Constantly increment a value
• Number of increments is proportional to the time the function is scheduled

• Interrupt → lower increments

10 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Online phase www.tugraz.at

• How can we mount the attack in JavaScript?
• Native instruction (rdtsc) not available
• performance.now limited resolution

• Implement a monotonic clock
• Constantly increment a value

• Number of increments is proportional to the time the function is scheduled
• Interrupt → lower increments

10 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Online phase www.tugraz.at

• How can we mount the attack in JavaScript?
• Native instruction (rdtsc) not available
• performance.now limited resolution

• Implement a monotonic clock
• Constantly increment a value
• Number of increments is proportional to the time the function is scheduled

• Interrupt → lower increments

10 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Online phase www.tugraz.at

• Single-threaded event loop

• Browsers do not allow endless loops and warn the user
• setTimeout/setInterval enforce a minimum pause of 4 ms

11 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Online phase www.tugraz.at

• Single-threaded event loop
• Browsers do not allow endless loops and warn the user

• setTimeout/setInterval enforce a minimum pause of 4 ms

11 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Online phase www.tugraz.at

• Single-threaded event loop
• Browsers do not allow endless loops and warn the user
• setTimeout/setInterval enforce a minimum pause of 4 ms

11 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Cooperative endless-loop slicing www.tugraz.at

• Slice endless loop into smaller finite loops

• Every loop as an execution time of ∼4 ms

• Before running the loop, we schedule the next loop with a timeout of 4 ms
• The next slice of the loop is executed immediately after the current slice
• Higher priority events (user inputs) can still be processed → browser remains

responsive
• Minimum timeout is reduced to 1000 ms if the user switches the tab

• Utilize Web Worker API to execute code in background

12 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Cooperative endless-loop slicing www.tugraz.at

• Slice endless loop into smaller finite loops
• Every loop as an execution time of ∼4 ms

• Before running the loop, we schedule the next loop with a timeout of 4 ms
• The next slice of the loop is executed immediately after the current slice
• Higher priority events (user inputs) can still be processed → browser remains

responsive
• Minimum timeout is reduced to 1000 ms if the user switches the tab

• Utilize Web Worker API to execute code in background

12 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Cooperative endless-loop slicing www.tugraz.at

• Slice endless loop into smaller finite loops
• Every loop as an execution time of ∼4 ms

• Before running the loop, we schedule the next loop with a timeout of 4 ms

• The next slice of the loop is executed immediately after the current slice
• Higher priority events (user inputs) can still be processed → browser remains

responsive
• Minimum timeout is reduced to 1000 ms if the user switches the tab

• Utilize Web Worker API to execute code in background

12 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Cooperative endless-loop slicing www.tugraz.at

• Slice endless loop into smaller finite loops
• Every loop as an execution time of ∼4 ms

• Before running the loop, we schedule the next loop with a timeout of 4 ms
• The next slice of the loop is executed immediately after the current slice

• Higher priority events (user inputs) can still be processed → browser remains
responsive

• Minimum timeout is reduced to 1000 ms if the user switches the tab
• Utilize Web Worker API to execute code in background

12 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Cooperative endless-loop slicing www.tugraz.at

• Slice endless loop into smaller finite loops
• Every loop as an execution time of ∼4 ms

• Before running the loop, we schedule the next loop with a timeout of 4 ms
• The next slice of the loop is executed immediately after the current slice
• Higher priority events (user inputs) can still be processed → browser remains

responsive

• Minimum timeout is reduced to 1000 ms if the user switches the tab
• Utilize Web Worker API to execute code in background

12 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Cooperative endless-loop slicing www.tugraz.at

• Slice endless loop into smaller finite loops
• Every loop as an execution time of ∼4 ms

• Before running the loop, we schedule the next loop with a timeout of 4 ms
• The next slice of the loop is executed immediately after the current slice
• Higher priority events (user inputs) can still be processed → browser remains

responsive
• Minimum timeout is reduced to 1000 ms if the user switches the tab

• Utilize Web Worker API to execute code in background

12 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Cooperative endless-loop slicing www.tugraz.at

• Slice endless loop into smaller finite loops
• Every loop as an execution time of ∼4 ms

• Before running the loop, we schedule the next loop with a timeout of 4 ms
• The next slice of the loop is executed immediately after the current slice
• Higher priority events (user inputs) can still be processed → browser remains

responsive
• Minimum timeout is reduced to 1000 ms if the user switches the tab

• Utilize Web Worker API to execute code in background

12 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Cooperative endless-loop slicing www.tugraz.at

1 function measure_time(id) {
2 setTimeout(measure_time, 0, id + 1);
3 counter = 0;
4 begin = window.performance.now();
5 while ((window.performance.now() - begin) < 5) {
6 counter = counter + 1;
7 }
8 publish(id, counter);
9 }

• Low impact on the system and browser performance
• Less than 256 bytes of code
• Can be hidden in modern JavaScript frameworks or online advertisements

13 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Cooperative endless-loop slicing www.tugraz.at

1 function measure_time(id) {
2 setTimeout(measure_time, 0, id + 1);
3 counter = 0;
4 begin = window.performance.now();
5 while ((window.performance.now() - begin) < 5) {
6 counter = counter + 1;
7 }
8 publish(id, counter);
9 }

• Low impact on the system and browser performance

• Less than 256 bytes of code
• Can be hidden in modern JavaScript frameworks or online advertisements

13 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Cooperative endless-loop slicing www.tugraz.at

1 function measure_time(id) {
2 setTimeout(measure_time, 0, id + 1);
3 counter = 0;
4 begin = window.performance.now();
5 while ((window.performance.now() - begin) < 5) {
6 counter = counter + 1;
7 }
8 publish(id, counter);
9 }

• Low impact on the system and browser performance
• Less than 256 bytes of code

• Can be hidden in modern JavaScript frameworks or online advertisements

13 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Cooperative endless-loop slicing www.tugraz.at

1 function measure_time(id) {
2 setTimeout(measure_time, 0, id + 1);
3 counter = 0;
4 begin = window.performance.now();
5 while ((window.performance.now() - begin) < 5) {
6 counter = counter + 1;
7 }
8 publish(id, counter);
9 }

• Low impact on the system and browser performance
• Less than 256 bytes of code
• Can be hidden in modern JavaScript frameworks or online advertisements

13 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Interrupt-timing Attack in JavaScript www.tugraz.at

6 ·10−28 ·10−2 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

1.26

1.28

1.3

·105

y a h o o . c o m

Runtime [s]

D
elt

a
[c

ou
nt

er
]

14 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Offline phase www.tugraz.at

• Process and analyze traces of the online phase

• Filter the measured trace to reduce noise
• Detect threshold for keystroke events

• Features of recorded measurements are strong enough that simple techniques
(k-nearest neighbours (KNN)) allow to build an efficient and accurate classifier

15 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Offline phase www.tugraz.at

• Process and analyze traces of the online phase
• Filter the measured trace to reduce noise

• Detect threshold for keystroke events

• Features of recorded measurements are strong enough that simple techniques
(k-nearest neighbours (KNN)) allow to build an efficient and accurate classifier

15 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Offline phase www.tugraz.at

• Process and analyze traces of the online phase
• Filter the measured trace to reduce noise
• Detect threshold for keystroke events

• Features of recorded measurements are strong enough that simple techniques
(k-nearest neighbours (KNN)) allow to build an efficient and accurate classifier

15 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Offline phase www.tugraz.at

• Process and analyze traces of the online phase
• Filter the measured trace to reduce noise
• Detect threshold for keystroke events

• Features of recorded measurements are strong enough that simple techniques
(k-nearest neighbours (KNN)) allow to build an efficient and accurate classifier

15 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Practical Attacks and Evaluation



URL Classification www.tugraz.at

• Infer URLs a user enters into the browsers address bar
• Intel i7-6700K and Firefox 52.0

• Train a classifier with the input sequences of the top 10 most visited websites

16 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



URL Classification www.tugraz.at

• Infer URLs a user enters into the browsers address bar
• Intel i7-6700K and Firefox 52.0

• Train a classifier with the input sequences of the top 10 most visited websites

16 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



URL Classification www.tugraz.at

• Small timing variations when the user starts typing and whenever the user presses
a key

• Compute the correlation for different alignments
• Evaluate classifier using k-fold cross-validation

17 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



URL Classification www.tugraz.at

• Small timing variations when the user starts typing and whenever the user presses
a key

• Compute the correlation for different alignments

• Evaluate classifier using k-fold cross-validation

17 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



URL Classification www.tugraz.at

• Small timing variations when the user starts typing and whenever the user presses
a key

• Compute the correlation for different alignments
• Evaluate classifier using k-fold cross-validation

17 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



URL Classification www.tugraz.at

am
azo

n.c
om

bai
du.

com

fac
ebo

ok.
com

goo
gle

.co
.in

goo
gle

.co
.jp

goo
gle

.co
m
qq.

com

wikip
edi

a.o
rg

yah
oo.

com

you
tub

e.c
om

youtube.com
yahoo.com

wikipedia.org
qq.com

google.com
google.co.jp
google.co.in

facebook.com
baidu.com

amazon.com

0.00 0.03 0.00 0.00 0.02 0.08 0.05 0.00 0.09 0.73

0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.92 0.03

0.02 0.04 0.10 0.06 0.05 0.02 0.02 0.69 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.02 0.96 0.00 0.01 0.01

0.00 0.00 0.03 0.00 0.01 0.86 0.06 0.00 0.02 0.02

0.00 0.01 0.00 0.09 0.73 0.08 0.00 0.06 0.02 0.01

0.03 0.04 0.02 0.67 0.06 0.03 0.02 0.07 0.02 0.04

0.04 0.02 0.72 0.02 0.00 0.05 0.01 0.10 0.04 0.00

0.00 0.84 0.03 0.05 0.02 0.00 0.03 0.01 0.00 0.02

0.81 0.04 0.01 0.04 0.02 0.03 0.03 0.02 0.00 0.00

Predicted URL

Ac
tu

al
UR

L

Figure 1: Confusion matrix for URL input.

18 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



User Classification www.tugraz.at

P1 P2 P3 P4

P4
P3
P2
P1

0.30 0.03 0.23 0.43

0.37 0.00 0.53 0.10

0.27 0.47 0.17 0.10

0.47 0.13 0.20 0.20

Predicted User

Ac
tu

al
Us

er
Figure 2: Confusion matrix for input by different users.

19 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Touchscreen Interactions www.tugraz.at

• Evaluate attack on mobile devices

20 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Touchscreen Interactions www.tugraz.at

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

2,000

3,000

4,000

tap tap swipe tap

Runtime [s]

D
elt

a
[c

ou
nt

er
]

Figure 3: Keystroke timing attack running in a native app on the Google Nexus 5.

21 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Touchscreen Interactions www.tugraz.at

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

1,000

2,000

tap tap swipe tap

Runtime [s]

D
elt

a
[c

ou
nt

er
]

Figure 4: Keystroke timing attack running in JavaScript on the Google Nexus 5.

22 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Touchscreen Interactions www.tugraz.at

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3,000

3,500

4,000

4,500

tap tap swipe tap

Runtime [s]

D
elt

a
[c

ou
nt

er
]

Figure 5: Keystroke timing attack running in JavaScript on the Xiaomi Redmi Note 3.

23 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Spying on other applications and PIN unlock www.tugraz.at

• Attack allows monitoring of every other event triggering interrupts

• Allows to monitor keystrokes in different tabs and other applications

24 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Spying on other applications and PIN unlock www.tugraz.at

• Attack allows monitoring of every other event triggering interrupts
• Allows to monitor keystrokes in different tabs and other applications

24 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Keystroke timing attack on different tab www.tugraz.at

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2,000

4,000

6,000

8,000

10,000
tap menu

redraw

new tab

redraw

tap swipe tap switch tab

redraw

select tab

redraw

activate tab

redraw

incognito tab

Runtime [s]

D
elt

a
[c

ou
nt

er
]

Figure 6: Keystroke timing attack running while switching to a different tab in the Chrome
browser on the Xiaomi Redmi Note 3.

25 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



PIN input www.tugraz.at

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

5,000

10,000

screen off

redraw

slide 1 2 3 4

redraw

tap

Runtime [s]

D
elt

a
[c

ou
nt

er
]

Figure 7: Keystroke timing attack running in the Firefox browser on the Xiaomi Redmi Note
3. While the user locked the screen, the application still detects keystrokes as long as it is
executed on the last used tab.

26 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Touchscreen Interactions www.tugraz.at

Device SoC Keystrokes Screen lock

Google Nexus 5 Qualcomm MSM8974 Snapdragon 800 3 -
Xiaomi Redmi Note 3 Mediatek MT6795 Helio X10 3 3

Homtom HT3 MediaTek MTK6580 3 3

Samsung Galaxy S6 Samsung Exynos 7420 - 3

OnePlus One Qualcomm MSM8974AC Snapdragon 801 3 3

OnePlus 3T Qualcomm MSM8996 Snapdragon 821 - -

Table 1: Mobile test devices.

27 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Covert channel www.tugraz.at

• Establish a unidirectional covert channel

• Sending a 1: Issue interrupt
• Sending a 0: Idle

• Utilize XMLHttpRequest to fetch a network resource from an invalid URL to
implicitly issue an interrupt

28 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Covert channel www.tugraz.at

• Establish a unidirectional covert channel
• Sending a 1: Issue interrupt

• Sending a 0: Idle

• Utilize XMLHttpRequest to fetch a network resource from an invalid URL to
implicitly issue an interrupt

28 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Covert channel www.tugraz.at

• Establish a unidirectional covert channel
• Sending a 1: Issue interrupt
• Sending a 0: Idle

• Utilize XMLHttpRequest to fetch a network resource from an invalid URL to
implicitly issue an interrupt

28 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Covert channel www.tugraz.at

• Establish a unidirectional covert channel
• Sending a 1: Issue interrupt
• Sending a 0: Idle

• Utilize XMLHttpRequest to fetch a network resource from an invalid URL to
implicitly issue an interrupt

28 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Covert channel www.tugraz.at

• Cross-tab

• Breaks Same-Origin policy (SOP)
• Breaks HTTP Strict Transport Security (HSTS) policy

• Cross-browser
• Circumvents process-per-site or process-per-tab policy
• Transmission from Firefox to Chrome
• Established with browsers running in incognito mode

• Transmission rate
• Raw transmission rate of 25 bps using a sample interval of 40 ms

29 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Covert channel www.tugraz.at

• Cross-tab
• Breaks Same-Origin policy (SOP)

• Breaks HTTP Strict Transport Security (HSTS) policy

• Cross-browser
• Circumvents process-per-site or process-per-tab policy
• Transmission from Firefox to Chrome
• Established with browsers running in incognito mode

• Transmission rate
• Raw transmission rate of 25 bps using a sample interval of 40 ms

29 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Covert channel www.tugraz.at

• Cross-tab
• Breaks Same-Origin policy (SOP)
• Breaks HTTP Strict Transport Security (HSTS) policy

• Cross-browser
• Circumvents process-per-site or process-per-tab policy
• Transmission from Firefox to Chrome
• Established with browsers running in incognito mode

• Transmission rate
• Raw transmission rate of 25 bps using a sample interval of 40 ms

29 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Covert channel www.tugraz.at

• Cross-tab
• Breaks Same-Origin policy (SOP)
• Breaks HTTP Strict Transport Security (HSTS) policy

• Cross-browser

• Circumvents process-per-site or process-per-tab policy
• Transmission from Firefox to Chrome
• Established with browsers running in incognito mode

• Transmission rate
• Raw transmission rate of 25 bps using a sample interval of 40 ms

29 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Covert channel www.tugraz.at

• Cross-tab
• Breaks Same-Origin policy (SOP)
• Breaks HTTP Strict Transport Security (HSTS) policy

• Cross-browser
• Circumvents process-per-site or process-per-tab policy

• Transmission from Firefox to Chrome
• Established with browsers running in incognito mode

• Transmission rate
• Raw transmission rate of 25 bps using a sample interval of 40 ms

29 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Covert channel www.tugraz.at

• Cross-tab
• Breaks Same-Origin policy (SOP)
• Breaks HTTP Strict Transport Security (HSTS) policy

• Cross-browser
• Circumvents process-per-site or process-per-tab policy
• Transmission from Firefox to Chrome

• Established with browsers running in incognito mode

• Transmission rate
• Raw transmission rate of 25 bps using a sample interval of 40 ms

29 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Covert channel www.tugraz.at

• Cross-tab
• Breaks Same-Origin policy (SOP)
• Breaks HTTP Strict Transport Security (HSTS) policy

• Cross-browser
• Circumvents process-per-site or process-per-tab policy
• Transmission from Firefox to Chrome
• Established with browsers running in incognito mode

• Transmission rate
• Raw transmission rate of 25 bps using a sample interval of 40 ms

29 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Covert channel www.tugraz.at

• Cross-tab
• Breaks Same-Origin policy (SOP)
• Breaks HTTP Strict Transport Security (HSTS) policy

• Cross-browser
• Circumvents process-per-site or process-per-tab policy
• Transmission from Firefox to Chrome
• Established with browsers running in incognito mode

• Transmission rate
• Raw transmission rate of 25 bps using a sample interval of 40 ms

29 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Countermeasures



Countermeasures www.tugraz.at

• Generic Countermeasures
• Inject phantom keystrokes that will be intercepted by malware [Mye17]
• Analyze the statistical properties of noise necessary to impede real keystroke

detection [Ort12]
• Do not prevent interrupt-timing attacks

• Fine-grained Permission Model for JavaScript
• Per-page level access control to APIs, e.g., web workers

30 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Countermeasures www.tugraz.at

• Generic Countermeasures

• Inject phantom keystrokes that will be intercepted by malware [Mye17]
• Analyze the statistical properties of noise necessary to impede real keystroke

detection [Ort12]
• Do not prevent interrupt-timing attacks

• Fine-grained Permission Model for JavaScript
• Per-page level access control to APIs, e.g., web workers

30 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Countermeasures www.tugraz.at

• Generic Countermeasures
• Inject phantom keystrokes that will be intercepted by malware [Mye17]

• Analyze the statistical properties of noise necessary to impede real keystroke
detection [Ort12]

• Do not prevent interrupt-timing attacks

• Fine-grained Permission Model for JavaScript
• Per-page level access control to APIs, e.g., web workers

30 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Countermeasures www.tugraz.at

• Generic Countermeasures
• Inject phantom keystrokes that will be intercepted by malware [Mye17]
• Analyze the statistical properties of noise necessary to impede real keystroke

detection [Ort12]

• Do not prevent interrupt-timing attacks

• Fine-grained Permission Model for JavaScript
• Per-page level access control to APIs, e.g., web workers

30 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Countermeasures www.tugraz.at

• Generic Countermeasures
• Inject phantom keystrokes that will be intercepted by malware [Mye17]
• Analyze the statistical properties of noise necessary to impede real keystroke

detection [Ort12]
• Do not prevent interrupt-timing attacks

• Fine-grained Permission Model for JavaScript
• Per-page level access control to APIs, e.g., web workers

30 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Countermeasures www.tugraz.at

• Generic Countermeasures
• Inject phantom keystrokes that will be intercepted by malware [Mye17]
• Analyze the statistical properties of noise necessary to impede real keystroke

detection [Ort12]
• Do not prevent interrupt-timing attacks

• Fine-grained Permission Model for JavaScript

• Per-page level access control to APIs, e.g., web workers

30 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Countermeasures www.tugraz.at

• Generic Countermeasures
• Inject phantom keystrokes that will be intercepted by malware [Mye17]
• Analyze the statistical properties of noise necessary to impede real keystroke

detection [Ort12]
• Do not prevent interrupt-timing attacks

• Fine-grained Permission Model for JavaScript
• Per-page level access control to APIs, e.g., web workers

30 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Conclusion



Conclusion www.tugraz.at

• First JavaScript-based keystroke timing attack
• independent of browser and operating system

• Infer accurate timestamps of keystrokes as well as taps and swipes
• Built classifiers to detect visited websites and identify users and a covert channel
• Highly practical, as it runs in background to spy on other tabs and applications

31 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Conclusion www.tugraz.at

• First JavaScript-based keystroke timing attack

• independent of browser and operating system

• Infer accurate timestamps of keystrokes as well as taps and swipes
• Built classifiers to detect visited websites and identify users and a covert channel
• Highly practical, as it runs in background to spy on other tabs and applications

31 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Conclusion www.tugraz.at

• First JavaScript-based keystroke timing attack
• independent of browser and operating system

• Infer accurate timestamps of keystrokes as well as taps and swipes
• Built classifiers to detect visited websites and identify users and a covert channel
• Highly practical, as it runs in background to spy on other tabs and applications

31 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Conclusion www.tugraz.at

• First JavaScript-based keystroke timing attack
• independent of browser and operating system

• Infer accurate timestamps of keystrokes as well as taps and swipes

• Built classifiers to detect visited websites and identify users and a covert channel
• Highly practical, as it runs in background to spy on other tabs and applications

31 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Conclusion www.tugraz.at

• First JavaScript-based keystroke timing attack
• independent of browser and operating system

• Infer accurate timestamps of keystrokes as well as taps and swipes
• Built classifiers to detect visited websites and identify users and a covert channel

• Highly practical, as it runs in background to spy on other tabs and applications

31 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Conclusion www.tugraz.at

• First JavaScript-based keystroke timing attack
• independent of browser and operating system

• Infer accurate timestamps of keystrokes as well as taps and swipes
• Built classifiers to detect visited websites and identify users and a covert channel
• Highly practical, as it runs in background to spy on other tabs and applications

31 M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard | Graz University of Technology



Practical Keystroke Timing Attacks in Sandboxed
JavaScript

M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, S. Mangard
Sep 11, 2017—ESORICS’17

Graz University of Technology


	Background
	Sandboxed Keystroke Timing Attacks without High-Resolution Timers
	Practical Attacks and Evaluation
	Countermeasures
	Conclusion

