
Half-Double: Hammering From the Next Row Over

Andreas Kogler1 Jonas Juffinger1,2 Salman Qazi3 Yoongu Kim3 Moritz Lipp4∗

Nicolas Boichat3 Eric Shiu5 Mattias Nissler3 Daniel Gruss1

1Graz University of Technology 2Lamarr Security Research 3Google
4Amazon Web Services 5Rivos

Abstract
Rowhammer is a vulnerability in modern DRAM where re-
peated accesses to one row (the aggressor) give off electrical
disturbance whose cumulative effect flips the bits in an adja-
cent row (the victim). Consequently, Rowhammer defenses
presuppose the adjacency of aggressor-victim pairs, including
those in LPDDR4 and DDR4, most notably TRR.

In this paper, we present Half-Double1, an escalation of
Rowhammer to rows beyond immediate neighbors. Using
Half-Double, we induce errors in a victim by combining many
accesses to a distance-2 row with just a few to a distance-1
row. Our experiments show that the cumulative effect of these
leads to a sufficient electrical disturbance in the victim row,
inducing bit flips. We demonstrate the practical relevance of
Half-Double in a proof-of-concept attack on a fully up-to-date
system. We use side channels, a new technique called Blind-
Hammering, a new spraying technique, and a Spectre attack in
our end-to-end Half-Double Attack. On recent Chromebooks
with ECC- and TRR-protected LPDDR4x memory, the attack
takes less than 45 minutes on average.

1 Introduction

Rowhammer is a widespread DRAM issue caused by the
unintended coupling between its constituent rows [31]. By
repeatedly accessing one row (i.e., aggressor), an attacker can
corrupt data in adjacent rows (i.e., victims) by accelerating
their charge leakage. As a powerful means of bypassing hard-
ware and software memory protection, Rowhammer has been
used as the basis for many different attacks (Section 2.3).

Previously, Rowhammer was understood to operate at a
distance of one row: an aggressor would only flip bits in
its two immediate neighbors, one on each side. This makes
intuitive sense: as a coupling phenomenon [54], the Row-
hammer effect should be the strongest at closest proximity.
Indeed, this assumption underpins many countermeasures

∗Work done while affiliated with Graz University of Technology.
1Named after a crochet stitch taller than a single but shorter than a double.

(Section 2.3) that have been proposed against Rowhammer,
especially the ones that rely on detecting aggressors and re-
freshing the charge in their intended victims (e.g., [31,35,40]).
In fact, Target Row Refresh (TRR), a productionized counter-
measure widely deployed as part of LPDDR4/DDR4 chips,
falls into this detect-and-refresh category [15].

In this paper, we present Half-Double, a new escalation
of Rowhammer where we show its effect to extend beyond
just the immediate neighbors. Using Half-Double, we are
able to flip bits in the victim by combining many accesses
to a far aggressor (at distance two) with just a few to a near
aggressor (at distance one). Both aggressors are necessary:
accessing just the former does not flip bits in a row that’s two
away, whereas accessing just the latter devolves into a classic
attack that’s easily mitigated. Based on our experiments, the
near aggressor appears to act as a bridge, transporting the
Rowhammer effect of the far aggressor onto the victim. Con-
cerningly, TRR facilitates Half-Double through its mitigative
refreshes, turning their recipient row into the near aggressor
that co-conspires with the far one that necessitated the refresh
in the first place. In effect, the cure becomes the disease.

While the discovery and evaluation of Half-Double is the
main contribution of this work, we also demonstrate its practi-
cal relevance in a proof-of-concept exploit. However, current
systems limit the attacker’s control, introducing 4 challenges:
First (C1), the adversary needs to allocate memory contigu-
ous in a DRAM bank. However, without access to physical
addresses [48] and huge pages [13, 19], we have to introduce
a novel approach combining buddy allocator information
with a DRAM timing side channel to reliably detect con-
tiguous memory. Second (C2), ECC-protected memory can
make bit flips unobservable depending on the victim data
which the attacker does not control, the adversary cannot tem-
plate the memory like in previous Rowhammer attacks as
hammering requires knowledge of the cell data. As state-of-
the-art [8, 13, 15, 19, 45, 51] does not solve this problem, we
introduce a novel technique called Blind-Hammering to in-
duce bit flips despite the ECC mechanism of LPDDR4x. Third
(C3), reduced address space sizes on recent ARM-based sys-

tems break the page table spraying mechanism from previous
attacks [19, 44, 48, 51]. Therefore, we develop a new spray-
ing technique that is still unmitigated. Finally (C4), without
templating, we need an oracle telling whether Rowhammer
induced an exploitable bit flip, without crashing the exploit.
For this, we introduce a novel approach using a Spectre-based
oracle for exploitable bit flips. We combine these techniques
into an end-to-end proof-of-concept, the Half-Double Attack2,
which escalates an unprivileged attacker to arbitrary system
memory read and write access, i.e., kernel privileges. The
Half-Double Attack runs within 45 minutes on a fully up-
dated Chromebook with TRR-protected LPDDR4x memory.

To summarize, we make the following contributions:
1. We discover a new Rowhammer effect: Half-Double, and

evaluate a set of devices and modules for susceptibility.
2. We perform a thorough root-cause analysis to empirically

prove that TRR is responsible for the Half-Double effect.
3. We analyze the stop-gap mitigations present in today’s

systems and show that with a new exploit using Half-Doub-
le, we can bypass them and build an end-to-end attack.

4. Our end-to-end Half-Double Attack runs on up-to-date
Chromebooks and combines the Half-Double effect with
exploit techniques, side channels, and a Spectre attack.
Outline. We provide background in Section 2 and introduce

a new Rowhammer pattern notation in Section 3. We overview
the the Half-Double effect in Section 4 and empirically verify
that it is a new effect in Section 5. We develop the end-to-
end attack in Section 6. We discuss the related work and
implications in Section 7 and conclude in Section 8.

Responsible Disclosure. Pre-existing contractual obliga-
tions between a subset of the authors and the memory vendors
mean we cannot provide details as to the effectiveness or
substance of efforts to remediate the flaws. We believe the
work should nonetheless be published as the impact of disclo-
sure is unlikely to impact consumer security substantially, as
the presence of Rowhammer-type vulnerabilities is a known
limitation in DRAM design prior to our publication [15, 31].
Therefore, we believe that publicly disclosing our new variant
will help rather than hinder the safe deployment of systems.

We responsibly disclosed Half-Double by notifying the
affected memory vendors, triggering a customary embargo.
The vulnerability was made public via a blog post after the
expiration of the embargo [43].

2 Background

In this section, we provide background on DRAM, the Row-
hammer effect, and the broadly deployed TRR mitigation.

2Our open-source proof-of-concept implementations can be found at:
https://github.com/iaik/halfdouble

2.1 DRAM Organization
The main memory system consists of multiple channels,
which are independent links between memory controller and
DRAM chips. Since DRAM chips have a narrow data bus,
several of them are grouped into a rank whose aggregated
data-bus width matches that of the channel. Multiple ranks
can time-share a channel. Chips in a rank run in lockstep, i.e.,
organizationally, like a single larger chip. Hence, we use the
terms “rank” and “chip” interchangeably. Each rank consists
of rows of capacitor-based DRAM cells. To access a row, the
voltage of its wordline must be raised, which connects its cells
to their respective bitlines. Referred to as activation, this pro-
cedure then involves what’s called the row-buffer – situated
at the other end of the bitlines – to sense the voltage perturba-
tions and to amplify them to either ‘0’ or ‘1’. This brings us
full circle as the cells are restored to their original state: fully
discharged or fully charged. As long as the same row remains
activated, subsequent accesses are served from the row-buffer.
Such row hits are faster than row conflicts which must activate
a different row. To increase the probability of a row hit, rows
within a rank are partitioned into banks with dedicated row
buffers. Capacitors and, thus, DRAM cells lose charge over
time. Thus, all rows must be refreshed at a regular interval
which is typically 32-64ms [27]. Refreshes are spread out
evenly over time, i.e., refreshing a small subset of rows with
each refresh command. We emphasize that refreshing a row
is exactly the same as activating it [38] (see Section 3).

2.2 DRAM Address Reverse Engineering
Various attacks require specific placement of data in DRAM,
motivating several works to reverse-engineer DRAM address-
ing functions. Pessl et al. [42] and later also Barenghi et al. [6]
used the row buffer timing side channel. Jung et al. [29]
reverse-engineered even the physical on-chip location via
heat-based hardware-fault attacks. Helm et al. [21] used per-
formance counters to measure row hits and misses. All of
these methods group addresses into sets of addresses that see
row conflicts or row hits with each other, i.e., they are in the
same bank. They then compute which combination of bits
indicates the set, which is often a linear XOR-combination
of bits. Helm et al. [21] showed that addressing functions
can vary between different address ranges or channels. While
older works found the row index to be just a subset of address
bits [19, 42, 48, 56], more recent works also found XOR com-
binations to be used for index bits as well [49]. As a response
to Rowhammer, physical addresses today are hidden from
user programs [32], rendering approaches that rely on them
unapplicable for attacks on up-to-date systems.

2.3 Rowhammer
At higher densities, chips are more likely to suffer from dis-
turbance errors caused by intra-chip crosstalk [39]. In 2014,

https://github.com/iaik/halfdouble

(D)
. . .
. . .
(V)
(N+)
. . .
(D)

(a) Single-sided

(N−)
(V)
(N+)

(b) Double-sided

(V)
(N+)

(c) One-location

Figure 1: Rowhammer access patterns: red rectangles ()
represent hammered rows, i.e., the near aggressors N , while
blue rectangles () represent the most likely row for bit flips,
i.e., the victim row V . Single-sided hammering accesses a set
of unrelated rows, which we call decoys D ().

Kim et al. [31] demonstrated row-to-row disturbance errors
in DRAM chips from memory accesses and called it row
hammer [23]. Recently, Walker et al. [54] provided a compre-
hensive analysis of the underlying physics of Rowhammer.

Existing Rowhammer access patterns (Figure 1) vary de-
pending on relative location of victim and aggressor(s). First,
in the single-sided pattern [48], an attacker alternates accesses
to two rows: an aggressor and what we call a decoy. Accesses
to the decoy (an arbitrary row in the same bank) are needed
to thrash the row-buffer to ensure that the aggressor is indeed
activated. There is also an “amplified” variant [19] where two
aggressors are placed next to each other. As the name suggests,
they sometimes work to reinforce each other, yielding more
bit flips in their respective victims than otherwise. Second,
in the double-sided pattern [48], the victim is sandwiched
between two aggressors. This is known to be the worst-case
access pattern that induces the most bit flips. There is also a
“many-sided” extension [15] that involves a larger number of
aggressors and victims with varying degrees of sandwiching.
Third, the one-location pattern [18] is similar to the single-
sided one except that it eschews the decoy. Instead, it waits for
the memory controller to clear the row-buffer before accessing
the aggressor again to ensure that it is activated.

The Rowhammer vulnerability has been demonstrated in
sandboxed environments [48], in native environments [7, 18,
48,49], in virtual machines [26,45,56], in JavaScript [8,13,19],
on mobile devices [14,51], and over the network [36,50]. Row-
hammer exploits often borrow traditional exploit techniques
such as memory spraying [19, 48, 56], grooming [51], and
page deduplication [8, 45] to place the target data structure
at the correct memory location. There are many proposals
to improve hammering, with special instructions [44], load
hazards [25], page table accesses [59], an onboard FPGA [55],
and memory pressure from quality-of-service techniques [1].

Many defenses have been proposed [18], focused on detect-
ing [10, 20, 22, 24, 35, 40, 41, 53, 58], neutralizing [8, 9, 19, 28,
45, 51], or eliminating [4, 9, 16, 30, 31] Rowhammer in soft-
ware or hardware. A defense that has already been integrated
into some DDR4 modules and the LPDDR4 standard [28] is
Target Row Refresh (TRR), which we discuss in Section 2.4.

⋮

⋮

RB

RA−2

RA−1

RA+0

RA+1

RA+2

RC

Decoy

Far Aggressor
Near Aggressor
Victim
Near Aggressor
Far Aggressor

Decoy

(D+)

(F+)
(N+)
(V)

(N−)
(F−)

(D−)

Figure 2: Row annotations for the rows inside a single bank
that surround the victim row.

2.4 Mitigative Refreshes (a.k.a. “TRR”)
Starting from the (LP)DDR4 generation, vendors have imple-
mented opaque and proprietary defenses inside their chips.
Frigo et al. [15] found that such measures appear to involve
two main components: (i) a sampler identifying potential ag-
gressors, and (ii) an inhibitor performing mitigative refreshes
on their potential victims. Furthermore, the sampler is limited
in its tracking capability and can be fooled when an attacker
interleaves activations to multiple rows.

In contrast, our Half-Double Attack capitalizes on the short-
comings of the inhibitor, which is hardwired to perform mit-
igative refreshes on just the immediate neighbors without
accounting for the longer-ranged effects of Rowhammer. In
fact, we show how mitigative refreshes actually facilitate
Half-Double Attack by turning their recipient row into a co-
conspirator – more specifically, it becomes the near aggressor
to the far one that necessitated the mitigative refresh.

In this paper, we use the terms “mitigative refresh” and
“TRR” (Target Row Refresh) interchangeably. Despite its
usage in previous works, the latter is a slight misnomer since
it refers to a previously proposed (but never adopted) DRAM
command that allows the CPU’s memory controller to send a
row-address alongside a refresh command [5].3

3 A Systematic Rowhammer Pattern Notation

In this section, we introduce a new systematic notation for
Rowhammer patterns, allowing us to categorize existing at-
tacks and describe the Half-Double Attack effect in Section 4.

Our notation describes Rowhammer patterns and their lo-
cality concerning the actual row location inside a bank.We
assume the row index represents the physical row position
inside a bank. For the notation, we assume that rows with con-
tiguous row indices are physically adjacent. Figure 2 denotes
the rows inside a bank as follows. The victim row (V) is the
target of the Rowhammer attack, and the bit flips inside this
row are used to measure the effectiveness of the pattern in the
experiments. The direct neighbors of the victim row are the
so-called near aggressor rows (N+, N−), which are directly
followed by the far aggressor rows (F+, F−). These three

3“Pseudo TRR” is emulating that behavior by sending a pair of activation
and precharge commands to refresh the desired row manually.

types of rows are located in a contiguous range inside a bank.
We denote rows further away from this range as decoy rows
(D). The absolute row position of the upper far aggressor row
(F+) is denoted with RA−2, this allows us to address these
rows with an index. To characterize the Rowhammer patterns,
we use a special notation, e.g., (Ai → (B → C)β)∞, where i
is the current repetition of the selected pattern. Hence, the first
memory access goes to A0. Then, the pattern accesses the
rows B and C and repeats these two accesses β times. After β

accesses to B and C, we continue with the next iteration, i.e.,
row A1 is accessed next, and so on.

With this notation, we compare known Rowhammer pat-
terns based on their row locality. Double-sided Rowham-
mer [48] uses two near aggressors to hammer the victim
row, i.e., we can express the pattern as (N+ →N−)∞. Single-
sided Rowhammer [48] effectively uses one near aggressor
to hammer the victim row and 7 decoy accesses, i.e., we can
express the pattern as (N+ → (Di)7)∞. However, the pur-
pose of these decoy rows is often to trigger a row conflict
on DIMMs that use an open row policy, as otherwise, the
accesses are served from the row buffer (cf. Section 2.1).
More recent Rowhammer type attacks like TRRespass [15]
and Smash [13], also use near aggressor and decoy rows.
However, in both cases, multiple victim rows are targeted in-
terleaved to exploit the limited TRR sampler size and deplete
the number of protected rows. This allows the attack to induce
flips in one of the victim rows hammered less often as the
TRR mitigation no longer protects them.

In summary, all existing Rowhammer patterns use near
aggressor rows to hammer, i.e., they are distance-1 patterns,
directly surrounding single or multiple victim rows. The TRR
mitigation is designed to mitigate these distance-1 type at-
tacks. TRR detects these repeated accesses to the near aggres-
sors with the sampler, and then the inhibitor refreshes the
victim row before a bit flip can occur (cf. Section 2.4). The de-
tailed implementation of TRR refreshes is vendor specific and
not publicly documented. We assume similar to Liu et al. [38],
that TRR refreshes are implemented by closing the currently
open row and then opening the victim row to load the row
into the row buffer and, therefore, refresh the content of the
victim. However, this raises the question of whether there are
practically exploitable distance-2 patterns.

4 The Half-Double Effect and Exploit

This section provides an overview of the Half-Double Attack,
its new hammering patterns, and challenges for the attack.

4.1 The Half-Double Effect

With Half-Double Attack, we present two new Rowhammer
patterns, the Quad pattern and the Weighted pattern (or more
verbosely, Weighted Single Plus Decoys (WS+D)).

The Quad pattern (Pattern 1) shifts the double-sided Row-
hammer pattern outwards by one row:

(F+ → F−)∞. (1)

However, as this only drains a small amount of charge from
the actual victim row, the Quad pattern incorporates the ef-
fects of TRR refreshes to hammer the victim row. The pattern
uses the far aggressors (F+, F−) to hammer. Hammering the
far aggressors is detected by the TRR sampler, and after a suf-
ficient number of row activations, the TRR inhibitor issues (in
an attempt to mitigate bit flips) a refresh command to the near
aggressors (N+, N−). The TRR refresh mechanism closes the
open row and activates the near aggressor rows successively
to refresh them. These additional activations from the TRR
refresh mechanism assist our hammering of the victim row
by draining further charge from the victim row (V).

The Weighted pattern (Pattern 2) distributes half the ham-
mers to the upper far aggressor (F+), and the others to the
rows below the victim row. Thus, we represent it as

(RA+4+3⋅i → F+ →RA+6+3⋅i → F+)∞. (2)

The intuition of this pattern is to shift a double-sided Rowham-
mer pattern over the rows below the victim, while distributing
half of the hammers to the far aggressor (F+). As the maxi-
mum number of rows inside a bank is limited, i is wrapped
around to zero if RA+6+3⋅i is outside the physical row range,
restarting the pattern below the victim. The first two repeti-
tions of the Weighted pattern produce the following sequence:
RA+4, F+, RA+6, F+, RA+7, F+, RA+9, F+. Similar to the
Quad pattern, the Weighted pattern hammers the far aggres-
sor (F+), but accesses decoys below the victim. The pattern
accesses the far aggressor triggering the mitigative refresh
mechanism (TRR) on the near aggressor (N+) assisting the
hammering by draining further charge from the victim (V).

We describe the effects of the Half-Double patterns with
the following hypothesis H under which the Half-Double
patterns induce flips into the victim row.

Hypothesis H: Hammering far aggressors (F+, F−) trig-
gers mitigative refreshes (TRR) on near aggressors (N+,
N−), implicitly assisting the hammering of the victim row
(V), by draining charge from it. However, the refreshes
of the near aggressors (N+, N−) cannot draw sufficient
charge from the victim row without the activations of the
far aggressors (F+, F−).

Compared with multi-sided Rowhammer [13,15], Half-Doub-
le patterns do not rely on depletion of TRR resources. Instead,
the patterns incorporate the TRR refresh mechanism such
that is assists the Rowhammer attack. Therefore, this pattern
is also applicable in a scenario where the TRR mechanism
works perfectly against distance-1 Rowhammer attacks. We
evaluate and discuss the differences between Half-Double and
state-of-the-art Rowhammer attacks in Sections 5.1.2 and 7.

4.2 The Half-Double Exploit

Rowhammer exploits typically involve solving several chal-
lenges beyond the bit flip. For Half-Double on state-of-the-art
systems, we identified 4 challenges: C1 the allocation of con-
tiguous memory (without physical address information or
huge pages), C2 finding bit flips without templating (to by-
pass defenses against templating), C3 memory spraying with
constrained spraying resources, and C4 bit flip verification
(due to the uncertainty created by hammering blind). For Chal-
lenges 1 and 3 we can extend existing techniques. However,
for Challenge 2, ECC memory hinders bit flip templating as
the ECC code depends on the data in the corresponding cells
unknown to the attacker. A novel approach we call Blind-
Hammering circumvents this problem by not templating for
bit flips. However, this introduces uncertainty, creating Chal-
lenge 4, which we resolve by combining Blind-Hammering
with a Spectre attack. Hence, we put more focus on Challenge
2 and Challenge 4 as they require novel methods.
Challenge 1: Allocation of Contiguous Memory. The first
challenge is to obtain access to adjacent rows in a bank. Phys-
ical address information is unavailable today due to previ-
ous Rowhammer attacks [32]. Huge pages or page fusion
mechanisms are not available on all systems, making both
approaches unapplicable for our attack. Therefore, we first
design a novel contiguous memory detection, incorporating
knowledge of the general structure of xor-based DRAM ad-
dressing functions to obtain information on the underlying
physical addresses, even if the DRAM addressing functions
of the device are unknown. Combined with knowledge of the
behavior of the buddy allocator, we obtain information on the
underlying physical addresses. Second, due to the precise row
location requirements of the Half-Double patterns, we need to
reverse-engineer the row indexing function of the bank using
a timing side channel. Finally, we map a virtual address via
the contiguous memory to a bank and row.
Challenge 2: An Alternative to Memory Templating. After
controlling contiguous rows inside a bank, the next challenge
is to find flippable locations inside the memory. Due to vari-
ances in the DRAM cells, some cells are more likely to flip
than others [54]. The current state of the art is templating
the memory in advance for locations that are susceptible to
Rowhammer flips. However, some ECC memory hinder this
step as bit flips are only reproducible in an attack if the tem-
plating was performed on the exact data or data that behaves
identically for the ECC code. An attacker usually does not
have this information, hindering the memory templating ap-
proach. Thus, we propose a new approach without memory
templating, namely Blind-Hammering.
Challenge 3: Memory Massaging. This challenge focuses
on filling the memory with targets that are exploitable with
Blind-Hammering. The targets of our exploit are page table
entries. We target the physical page number inside these page
table entries. We use an approach where we map shared mem-

ory between multiple children of the parent process to fill the
memory with additional page tables without filling the main
memory with other non-exploitable data pages.
Challenge 4: Bit-Flip Verification. This challenge focuses
on determining the location of an induced bit flip. Due to
Blind-Hammering, we cannot directly check whether the ham-
mering was successful or not, as accessing a potential cor-
rupted page-table entry (PTE) is detected by the OS, terminat-
ing the exploit. We solve this problem with a novel Spectre
oracle [33] determining whether the address is safe to ac-
cess. We also develop an architectural alternative oracle and
evaluate the advantages and drawbacks of both approaches.

We solve the above challenges in Section 6 and gain com-
plete control over the system’s main memory, proving that the
Half-Double effect can be exploited on real-world systems.

5 Empirical Evaluation of Half-Double

To show that the hypothesis H holds and explains the Half-
Double effect, we make the following observations:
1. We show that the Half-Double effect exists, i.e., inducing

bit flips on current TRR-protected systems (Section 5.1).
2. We show that Half-Double does not occur without (TRR-

induced) refreshes on near aggressors and that there is a
relation between TRR refreshes and the number of bit flips
observed, i.e., (counter-intuitively) more TRR refreshes
lead to more bit flips in the victim row (Section 5.2).

To obtain noise-free observations, we use an FPGA board with
full control over all refreshes and memory accesses, where
we have no requirements on data retainment for stability (Sec-
tion 5.3). Since the focus of this section is to show the above
points and, thus, that the hypothesis H holds, we do not re-
strict ourselves to a specific threat model in this section.

5.1 Half-Double on TRR-protected LPDDR4x
In this subsection, we demonstrate Half-Double using the
Quad pattern on TRR-protected systems.4 We show that this
pattern can generate bit flips and record the number of ob-
served bit flips to measure the performance.

5.1.1 Test System and DRAM Addressing Functions

We use 10 commodity systems (see Table 9 for a full list).
We reverse-engineer the DRAM addressing functions using
the method by Pessl et al. [42] (cf. Section 2.2). Since their
approach only maps a physical address to a given bank but
does not recover the precise row index we need for the Quad
pattern, we use an additional timing side channel between
row hits and row conflicts within a bank [49] (cf. Section 2.2)
to obtain information on the row indices. We discover that
our two identical ARM-based Lenovo Chromebooks have the

4We analyze the Weighted pattern in Section 5.2 and Section 5.3.

N 18 17 16 15 14 13 12 8 0

⊕
⊕

⊕

h0
h1
h2

h3

⊕
⊕

. . .

r
Figure 3: The reverse-engineered DRAM addressing func-
tions from our Chromebooks.

same row scrambling functions described by Tatar et al. [49],
where bit 3 is XORed onto bits 2 and 1 in the row index. We il-
lustrate the full DRAM addressing and indexing functions for
the Chromebooks in Figure 3. With the device-specific func-
tions, we map physical addresses to banks and row indices
and, thus, test the Half-Double patterns from Section 4.1.

5.1.2 Evaluation of the Quad pattern

We test the Quad pattern with two strategies to reach DRAM:
uncacheable memory [52] and memory flushing [31]. For
uncacheable memory, we mark the far aggressors, the near
aggressors, and the victim as uncacheable, allowing more
hammering attempts within one refresh interval. The memory
flushing approach is much slower, relying on the architecture’s
flush instruction to flush the far aggressors from the cache.

For our evaluation, we allocate a large chunk of memory
and use the Linux pagemap interface [32] to extract physical
addresses. We analyze the physical addresses of the chunk
and group the virtual addresses corresponding to their banks.
Afterwards, we search for addresses from the same bank map-
ping to a consecutive range of rows representing the Quad
pattern, i.e., we find rows RA−2 to RA+2, cf. Figure 2.

Modern memory controllers scramble data by XORing a
mask onto the row’s data. Cojocar et al. [11] showed that
the data mask is the same across all rows. We empirically
observed the data scrambling and, correspondingly, set all
bytes of the far aggressor and near aggressor rows to 0x55
and fill the bytes of the victim row with 0xaa. We found that
this maximizes the number of bit flips we see in the Quad
pattern attack across the tested devices.

The hammering runs in a tight loop accessing the far ag-
gressors. We run the Quad pattern for 20 000 000 iterations
and check the victim row for bit flips. Table 1 shows the re-
sults of both approaches. The Chromebook2 shows 36 times
more flips than the identical Chromebook1. The OnePlus 5T
shows similar flip tendencies as the Chromebook1. With un-
cacheable memory, we can induce 10 to 20 times more bit
flips on the Chromebooks. However, the OnePlus 5T does not
show a huge increase when using uncachable memory. We
also observe more flips from 1 to 0, similar to Kim et al. [31].
However, we conclude that an attack is possible in either case,
albeit faster if uncacheable memory is available.

Table 1: Performance of the Quad pattern with uncacheable
memory and flush instruction on affected LPDDR4x systems.

System NHammers UC0→1 UC1→0 Flush0→1 Flush1→0

Chromebook1 23 274 27 40 2 5
Chromebook2 23 586 235 2379 12 101
OnePlus 5T 25 687 2 30 1 24
Pixel 3 32 921 11 5 0 0
HTC U11 21 840 - - 3 17

Key Insight: Half-Double is capable of producing bit flips
on TRR-protected memory.

To compare the Half-Double effect with current state-of-
the-art multi-sided Rowhammer patterns, we performed three
experiments using TRRespass [15] with up to 20 aggres-
sors on our most susceptible commercial system, i.e., the
Chromebook2. First, we ported the publicly available TR-
Respass tool to ARM, including row scrambling and un-
cacheable memory support to search for bit flips. Second,
we implemented the patterns in our hammering tool for cross-
validation. We evaluated hammering uncachable memory
with the Quad pattern with one of a 12 aggressor multi-sided
pattern under the same conditions. We did not observe any
bit flips with multi-sided patterns, whereas the Quad pattern
induced 956 flips over the same time frame. This experiment
concludes that there are commodity devices that are affected
by Half-Double but not (or less) by other state-of-the-art pat-
terns. Section 7 provides further discussion of Half-Double
and multi-sided Rowhammer.

5.2 Determining the Role of TRR
With the experiments on the commodity systems, we cannot
rule out that the observed flips are distance-1 flips induced
solely by TRR (or other row refreshes), or that they are actu-
ally distance-2 bit flips induced by far aggressor hammering.
In line with prior work [54], we observe a small number of
distance-2 bit flips, too infrequent to explain Half-Double (cf.
Section 5.3). Furthermore, Helm et al. [21] found complex
addressing functions that change depending on the actual
physical location. To exclude this possible source of error, we
use a commercial SoC platform with LPDDR4x memory to
measure the influence of refreshes, e.g., those from TRR.

We obtained precise but confidential information from the
vendor on the relationship between the actual physical row
location inside a bank and the physical address on this SoC
platform. For this system, we can switch memory refreshes
off and on. However, this switch disables not only the TRR
refreshes but also refreshes issued by the memory controller
to conform to the refresh interval (e.g., 64 ms) or by pTRR.
Completely disabling refreshes renders the system unusable,
as DRAM cells lose charge and corrupt data after a short
period. To still be able to run actual software, we build a duty
cycle mechanism alternating between enabled and disabled

0 1 2 3 4 5

⋅104

1

2

3

Parameter β

Fl
ip

s
in

V

((F+ →D)β
→N+)∞

Figure 4: Number of observed bit flips in the victim over the
dilution parameter for the single-sided case.

refreshes, we denote as dance (i.e., dancing between refresh
on and off). In these dance experiments, we enable refreshes
for 25 % of the time, i.e., 64 ms enabled and 192 ms disabled.

The dance experiments allow limiting the number of re-
freshes temporarily and, therefore, observe the correlation
between refreshes and the number of bit flips. While refreshes
are disabled, they cannot unintentionally assist our Half-Doub-
le patterns, i.e., no interfering TRR refreshes. While the win-
dow where refreshes are disabled is longer than the standard
refresh period (e.g., 64 ms), it is short enough to avoid insta-
bilities. We expect a reduction of the number of bit flips with
a decreasing number of refreshes if our hypothesis H holds,
i.e., the TRR refreshes assist the Half-Double effect.

To show that TRR refreshes assist the observed bit flips
from Section 5.1, we run the following experiment: We de-
sign three pattern categories to demonstrate the Half-Double
effect: the first to show that the effect is not explained by
distance-2 hammering, the second to show that simulated
TRR refreshes trigger the effect as well, and the third to show
that only the simulated TRR refreshes alone do not trigger
the effect. The patterns used to verify the hypothesis are con-
structed around the victim row. These observations show that
only the combination of the TRR refreshes (or other accesses)
to the near aggressors combined with our accesses to the far
aggressors trigger the Half-Double effect, confirming our hy-
pothesis H. For our experiment we use a victim row that was
reliably susceptible to Rowhammer attacks, i.e., we usually
were able to induce three bit flips with the Weighted pattern.

The first category verifies that the observed bit flips are
not caused solely by distance-2 hammering. The single-sided
Pattern S1 accesses far aggressor (F+) and a decoy (D).

(F+ →D)∞ (S1)

The double-sided Pattern D1 replaces this decoy with an ac-
cess to the lower far aggressor (F−).

(F+ → F−)∞ (D1)

While with TRR, we observed a significant number of bit flips,
in our experiments, both patterns do not show any consider-
able number of bit flips with TRR refreshes disabled. The
number of bit flips observed is far too low to visualize them
or to explain the Half-Double effect by distance-2 Rowham-
mer bit flips (as we detail further in Section 5.3). Hence, this

0 1 2 3 4 5

⋅105

0
2
4
6

Parameter β

Fl
ip

s
in

V ((F+ →F−)β
→N+ →N−)∞

Figure 5: Number of observed bit flips in the victim over the
dilution parameter for the double-sided case.

indicates that TRR refreshes contribute to the Half-Double
effect, in support of our hypothesis H.

The second category of patterns extend the Half-Double
patterns with simulated TRR refreshes to the near aggressors
while TRR is disabled. Patterns S1 and D1 are repeated β

times before simulated TRR accesses to the near aggressors
are performed. The single-sided Pattern S2 simulates TRR by
accessing the near aggressor (N+).

((F+ →D)β
→N+)∞ (S2)

The double-sided Pattern D2 simulates TRR by accessing
both near aggressors (N+, N−).

((F+ → F−)β
→N+ →N−)∞ (D2)

The parameter β is a dilution parameter allowing us to vary
how many simulated TRR refreshes are performed, i.e., we
perform accesses to the near aggressors after a certain amount
of accesses to the far aggressors.

For a low dilution parameter (i.e., very high number of ac-
cesses to the near aggressors), these patterns behave like a
traditional single-sided or double-sided Rowhammer attack
without TRR protection, i.e., inducing many bit flips. We
confirmed this empirically, shown in Figure 4 for the singled-
sided Pattern S2 and in Figure 5 for the double-sided Pat-
tern D2. We see a correlation between the dilution parameter
β and the number of bit flips, i.e., fewer simulated refreshes
lead to fewer bit flips. An alternative representation is also
provided in Appendix B. From these observations, we con-
clude that accesses to the near aggressor contribute to the
observed bit flips, supporting our hypothesis H. However, we
also need to test the null hypothesis, as we do in the following.

For this purpose, the third pattern category implements
placebo patterns to verify that the bit flips in the second pattern
category are not caused solely by the accesses to the near
aggressors (i.e., the null hypothesis). The patterns access
decoys to keep the overall accesses rate to near aggressors
the same as Patterns S2 and D2 for a given dilution. Thus, the
single-sided Pattern S3 accesses one near aggressor (N+).

((D1 →D2)β
→N+)∞ (S3)

The double-sided Pattern D3 accesses both (N+, N−).

((D1 →D2)β
→N+ →N−)∞ (D3)

Table 2: Number of bit flips observed in our FPGA setup (rows with bit flips in parentheses). The hammer duration determines
the number of accesses (hammer count). The hammer duration has a stronger influence on the number of bit flips and affected
rows than the dilution factor. Even a dilution factor of 3712, within one 64 ms refresh interval fits 950 272 accesses, 256 of which
to the near aggressors simulating TRR (cf. Section 3), still induces bit flips in all 32 rows. Thus, only 256 accesses to the near
aggressors combined with 950 016 accesses to the far aggressors are sufficient to attack any row.

Accesses 296 960 356 352 415 744 475 136 534 528 593 920 653 312 712 704 772 096 831 488 890 880 950 272
Duration 20 ms 24 ms 28 ms 32 ms 36 ms 40 ms 44 ms 48 ms 52 ms 56 ms 60 ms 64 ms

D
ilu

tio
n

Fa
ct

or

58 1 (1) 3 (3) 5 (5) 6 (6) 15 (12) 26 (19) 35 (20) 44 (23) 57 (28) 83 (30) 115 (32) 173 (32)
116 1 (1) 3 (3) 4 (4) 6 (6) 14 (11) 24 (19) 32 (20) 40 (22) 51 (27) 73 (30) 117 (32) 152 (32)
232 1 (1) 3 (3) 4 (4) 5 (5) 12 (10) 24 (19) 31 (20) 39 (21) 51 (27) 68 (30) 112 (32) 149 (32)
464 1 (1) 2 (2) 3 (3) 5 (5) 11 (8) 24 (18) 32 (20) 39 (21) 49 (26) 70 (30) 109 (32) 148 (32)
928 1 (1) 2 (2) 3 (3) 5 (5) 11 (8) 25 (18) 32 (20) 39 (21) 49 (25) 70 (29) 108 (32) 146 (32)

1856 0 (0) 2 (2) 3 (3) 5 (5) 11 (8) 22 (17) 32 (20) 37 (21) 49 (25) 66 (29) 110 (32) 140 (32)
3712 0 (0) 2 (2) 3 (3) 5 (5) 10 (7) 22 (16) 30 (20) 37 (21) 49 (25) 64 (27) 99 (31) 139 (32)
7424 0 (0) 2 (2) 3 (3) 5 (5) 8 (6) 18 (15) 29 (19) 36 (20) 48 (25) 66 (27) 92 (31) 128 (31)

14 848 0 (0) 0 (0) 2 (2) 4 (4) 7 (6) 15 (12) 22 (15) 32 (19) 40 (22) 58 (27) 80 (30) 109 (30)
29 696 0 (0) 0 (0) 2 (2) 2 (2) 3 (3) 8 (7) 11 (9) 19 (14) 28 (18) 41 (25) 57 (27) 82 (29)

Table 3: The modules used in the FPGA analysis. M1 is not
affected by Half-Double, M3 is affected within default refresh
windows (64 ms), M2 is affected with longer windows.

Module Freq. Size Ranks Banks Pins Half-Double

M1 2666 4 GB 1 8 x16 ✗
M2 3200 4 GB 1 8 x16 ✓(>64 ms)
M3 3200 8 GB 1 8 x16 ✓

When varying the dilution parameter, we observe a point at
which the second category of patterns still produce bit flips in
the victim, whereas the third category no longer does. More
concretely, Pattern S3 shows a decrease in the bit flips before
Pattern S2. We observe the same effect also for the double-
sided case where the number of bit flips with Pattern D3 drops
at a lower dilution parameter than the number of bit flips with
Pattern D2. Since we only access decoys Di, unrelated to the
victim row V , this drop is explained by the missing accesses
to the far aggressors F , supporting our hypothesis H. We
conclude that the additional accesses of the TRR inhibitor
assist the hammering of the victim for the Half-Double effect.

Key Insight: TRR refreshes assist Half-Double but are
not the root cause. They alone induce no bit flips in the
victim.

5.3 Noise-free FPGA Experiments
To confirm our results without noise, we use the ZCU104
FPGA platform5 where we have full control over all refreshes
and memory accesses and no requirements on data retainment
for stability. In contrast to Section 5.2, we can disable all
refreshes on the FPGA-based platform because the platform
itself does not store any data in the DIMM, i.e., the FPGA
does not use the DIMM as system memory.

5https://github.com/antmicro/litex-rowhammer-tester

We analyzed three off-the-shelf DDR4 DIMMs listed in Ta-
ble 3 and found that M1 is not susceptible to the Half-Double
effect. While the other two are affected, we could only demon-
strate bit flips with the default refresh interval of 64 ms on
M3, whereas M2 required a doubled refresh interval (128 ms).
Therefore, for our analysis, we focused on M3, the DIMM
susceptible to Half-Double by default. For our experiments,
we use the same patterns as in Section 5.2 and confirm our
results in this highly controlled and noise-free setup.

((F+ → F−)β
→N+ →N−)∞ (D2)

With Pattern D2, we hammer 32 rows individually and vary
both dilution parameter β and total hammer duration (i.e.,
hammer count, number of accesses) in this experiment. Fur-
thermore, we vary the hammer duration from 20 ms to 64 ms
with a step size of 4 ms. In contrast to the dilution parame-
ter, we introduce the dilution factor d f . This factor slightly
changes the representation of β. The relation between the
dilution factor and the dilution parameter for Pattern D2 is
d f = β+1. A dilution factor of 58 refers to 1 distance-1 ham-
mer in every 58 hammers. Therefore, we can compute the
accesses to the near aggressors directly by dividing the total
hammers by the dilution factor. The dilution factor is varied
from 58 to 29 696 by doubling it in each step.

Table 2 shows the results of this experiment and we can
observe two effects, as expected: First, the number of bit
flips increases with the hammer duration. We can induce
bit flips in all 32 rows within one default refresh interval
(64 ms) regardless of the tested dilution factor. Second, the
number of bit flips decreases with a higher dilution. However,
the decrease in bit flips is much flatter than for the hammer
duration. Even with the highest tested dilution, we induce flips
into 29 out of 32 rows within one default refresh interval.

To underline that the Half-Double effect is a different phe-
nomenon than distance-1 and distance-2 Rowhammer effects,
we test two more patterns on the FPGA system and compare

https://github.com/antmicro/litex-rowhammer-tester

Table 4: Distance-1 double-sided hammering (N+ →N−)∞
and the observed bit flips per cell and row.

Hammers Time (ms) Cells Rows

18 000 1.212 2 1
24 000 1.616 23 18
30 000 2.020 136 31
36 000 2.425 495 32
42 000 2.829 1395 32
48 000 3.233 2870 32
54 000 3.637 5099 32
60 000 4.041 7749 32

them with the results obtained in the previous experiment. We
use distance-1 double-sided Rowhammer (N+ →N−)∞ and
the distance-2 variant (F+ → F−)∞. We again hammer 32
rows and measure the observed flips on a cell and row basis.

Table 4 shows the results of distance-1 double-sided ham-
mering, where the number of hammers required to induce
flips into all 32 rows is only 36 000. This is 25 times smaller
than with Half-Double, indicating that Half-Double is not
just distance-1 Rowhammer. However, 36 000 accesses are
also much higher than what a TRR implementation could
perform within the standard 64 ms refresh interval. Even at a
low dilution factor like 58, this would require about 2 088 000
accesses within one refresh interval, i.e., about twice as many
accesses than fit in the standard refresh interval.

Table 5 shows distance-2 double-sided hammering and we
observe that we need 4 000 000 hammer accesses to obtain a
single distance-2 bit flip, i.e., four times more accesses than
fit within a 64 ms refresh interval. Hence, Half-Double can
also not be explained with distance-2 bit flips.

In line with Section 5.2, this again shows thatH holds. With
our results from Table 2, we can model when the Half-Doub-
le effect occurs. With a dilution factor of 3712 and 950 272
hammers, the total number of accesses to the near aggressors
is 256. Therefore, only 256 accesses to the near aggressors,
combined with 950 016 accesses to the far aggressors are
sufficient to induce flips in each of the 32 rows. However, if
we compare these numbers with the equivalent accesses in the
distance-1 and distance-2 experiments, we are far below the
required accesses to see even a single bit flip in both cases.

Key Insight: Both distance-1 Rowhammer and distance-2
Rowhammer effects would require more accesses than fit
inside the standard 64 ms refresh interval if they would
induce the Half-Double effect. Hence, we conclude that
H is the most plausible explanation of Half-Double.

6 Half-Double Attack Exploit

In this section, we demonstrate the real-world attack capabili-
ties of the Half-Double Attack. The attack is split into multiple
phases, each tackling one of the challenges (see Section 4.2)

Table 5: Distance-2 double-sided hammering (F+ → F−)∞
and the observed bit flips per cell and row.

Hammers Time (ms) Cells Rows

4 000 000 270 1 1
5 000 000 336 1 1
6 000 000 404 2 2
7 000 000 472 2 2
8 000 000 538 3 3
9 000 000 606 2 2

10 000 000 674 3 3

to finally gain complete control over the system from within
an untrusted executable. Our attack aims to induce a bit flip
in the physical page-frame number of a PTE. If the corrupted
page-frame number points to attacker-controlled data instead
of the original page table, the adversary can forge additional
page table entries. This grants the adversary arbitrary read
and write access to the entire system memory.
Threat Model. We assume that the victim runs an untrusted
executable or Android APP on either an ARM or x86 based
system for our attack. Our attack does not exploit any soft-
ware vulnerabilities in the OS or other running programs but
only uses side-channel information and the provided inter-
faces by the OS. Furthermore, we assume that the LPDDR4x
DRAM used on the system is both ECC- and TRR-protected.
However, our attack does not rely on the exhaustion of TRR re-
sources like previous Rowhammer attacks targeting TRR [15].
We evaluate the challenges on the Chromebooks, the OnePlus
5T and a Lenovo T490s to show the applicability across mul-
tiple architectures and operating systems (see Appendix A).
From Virtual Memory Accesses to Half-Double Patterns.
In the first step of our exploit, we map virtual addresses to
actual physical row locations inside the DRAM banks, a build-
ing block to hammer with the Half-Double patterns. While
we can use the Quad pattern and the Weighted pattern, we
focus on the Quad pattern in our exploit as it induces bit flips
faster. For the Quad pattern, we need to control at least five
adjacent rows where the middle row is unmapped and used
by the victim process. With DRAM addressing functions (cf.
Section 5.1.1 and Figure 3), we can determine the physical
location inside a bank and row. However, the required phys-
ical address information is not available to the unprivileged
executable. We solve this challenge (C1) in Section 6.1.
Inducing Bit Flips. In the second step, we need to place
potential bit flip targets at the right memory locations. Tem-
plated bit flips are very likely not reproducible during the
actual attack, as the data in the victim rows differs between
templating and attack phase, and the integrated ECC mecha-
nisms of the DRAM depend on the actual data stored in the
victim row. Consequently, bit flips during templating may
not occur when attempting to fault the targeted data during
the attack. Therefore, in Section 6.2, we present two new
ways to solve C2. The first technique uses an alternative tem-
plating process that is ECC-aware. The second technique,

Table 6: Page distance patterns on the Chromebooks. Each
pattern has one unique page distance highlighted in yellow.

P d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 . . .

P0 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 1 . . .
P1 8 7 8 11 8 7 8 11 8 7 8 11 8 7 8 3 . . .
P2 8 9 8 5 8 9 8 13 8 9 8 5 8 9 8 5 . . .
P3 8 7 8 7 8 7 8 15 8 7 8 7 8 7 8 7 . . .

called Blind-Hammering, is a versatile alternative to templat-
ing. However, verifying whether exploitable bit flips occurred
becomes its own challenge then as we outline below.
Placing Exploitable Data. In the third step, we fill the sys-
tem’s memory with PTEs. However, due to address space lim-
itations modern ARM-based devices enable for performance
reasons, we cannot use the same spraying techniques as prior
Rowhammer attacks. In Section 6.3, we solve this challenge
C3 by spawning child processes to increase the number of
page tables in memory via multiple address spaces.
Bit-Flip Verification. We cannot directly access the ham-
mered victim rows. Attempting to access a corrupted mapping
is also fatal, as the Linux kernel detects corrupted PTEs upon
faults and terminates the corresponding user-space process. In
Section 6.4, we solve C4 and use a Spectre attack to prevent
irrecoverable crashes of our attacking app.

Combining all steps, we obtain a full end-to-end exploit
with read and write access to the entire system’s memory.

6.1 C1: Memory Allocation

To use the Half-Double patterns, the adversary needs access
to at least 5 adjacent rows within the same bank. We present
three distinct approaches to solve this challenge. Either via
huge pages, using unique bank access patterns if the DRAM
addressing functions are known, or by using the structure of
unknown xor-based DRAM addressing functions
Via Huge Pages. The Chrome OS running on the Chrome-
books as well as the Ubuntu running on the T490s has trans-
parent huge pages activated. For 2 MB huge pages, the lowest
21 bits of virtual and physical address are the same. This
covers all bits we need to find adjacent rows across the test
systems, effectively solving this challenge (cf. Figure 3).
Via DRAM Addressing Functions. Disabling huge pages
mitigates the aforementioned approach. Unfortunately, Half-
Double requires specific row index information going beyond
contiguency information from prior work [14, 34, 47]. How-
ever, we can combine information on DRAM addressing func-
tions (cf. Figure 3) and the buddy allocator [17] used in Linux
and Chrome OS to detect contiguous memory blocks and re-
construct the additional physical address bits we require.

When dealing with a contiguous range of physical memory,
the pages of the memory range are distributed over multiple
banks due to the DRAM addressing functions. We now select
only pages of a given bank and iterate over all the allocated
pages to analyze the page distances. The page distance is

Table 7: Reconstruction of physical address bits via unique
page distances.

Page From To

Distance b18 b17 b16 b15 b14 b13 b12 b18 b17 b16 b15 b14 b13 b12

1 B 1 1 1 1 1 1 B̄ 0 0 0 0 0 0
3 B 1 1 1 1 1 0 B̄ 0 0 0 0 0 1
13 B 1 1 1 0 0 1 B̄ 0 0 0 1 1 0
15 B 1 1 1 0 0 0 B̄ 0 0 0 1 1 1

the distance between two pages in the same bank. If we fix
the bank and analyze the allocated memory, we observe that
the page distances on the Chromebooks follow one of four
patterns. Table 6 shows these four page distance patterns. The
patterns have a period of 16, and each pattern has one unique
page distance, which is highlighted in yellow. We only find
four patterns since we can skip bit 8 of the DRAM addressing
functions, as we always control it with the virtual address,
leaving only eight remaining banks. However, we only ob-
serve four patterns as two banks share the same pattern.

All four page distance patterns have one unique distance
per period (1,3,13, or 15). This unique value allows us to re-
construct the physical address bits 12 to 17, since the DRAM
addressing functions start at bit 12 (cf. Figure 3). If we ad-
vance the unique page distance in pages (4 kB) in the physical
memory, the underlying address bits 12 to 17 of the physical
address change. However, due to the page distance analysis
with the timing side channel [34, 47], we know that the page
advanced by the unique page distance falls into the same
bank. Therefore, changing the address bits did not influence
the outcome of the bank from the DRAM addressing func-
tions. This can only be the case once for each bank. Due to the
unique page distance, we know that we fall into one of two
banks, and therefore, this analysis only leaves bit 18 unknown.
Table 7 shows the reconstructed physical address bits for each
unique page distance value, depending on bit 18. This 50 %
probability acts as a corresponding slow down for the attack.
Via DRAM Addressing Structure. We generalize the
previous approach by formulating the general structure of
xor-based DRAM addressing functions in the Z3 theorem
prover [12]. Schwarz et al. [47] use a similar solver to re-
cover physical address parts from known DRAM addressing
functions and Kwong et al. [34] use a solver to recover bank
information from contiguous memory. We in contrast retrieve
contiguous memory information via bank access patterns
without knowing the DRAM addressing functions.

In the exploit, we record the bank access pattern when iter-
ating over each page of a virtual address range and determine
the corresponding bank affinity via the row-conflict timing
side channel [42]. The solver uses the pattern and the underly-
ing structure of the xor-based DRAM addressing functions to
implement the following question: Can this bank access pat-
tern be generated via a xor-based addressing function when
walking over contiguous physical memory? If the constraints
are unsatisfiable, the underlying memory range is not contigu-

Initial

Flipped

Corrected

01101000
↓

00101010
↓

00101010

(a) c1 and c6
flip

00101000
↓

00101010
↓

00101000

(b) c1 flips but
is corrected

01101010
↓

00101010
↓

01101010

(c) c6 flips but
is corrected

Figure 6: Error correction of 8 memory cells with ECC (from
c7 to c0). We effectively never see single bit flips.

ous or, the addressing functions are not xor-based. However,
if the constraints are satisfiable, the solver found addressing
functions and a physical start offset that generate this access
pattern. The constraints are detailed in Appendix C. We re-
strict the bits of the xor masks to only cover physical address
bits 12 to 20, as the page offset controls bits below 12, and
bits above 20 are not needed to find adjacent rows.
Evaluation. The memory scan takes less than 10 seconds
with 2 MB pages and less than 3 minutes using the page
distance, i.e., 19.05 MBs−1 (n=10, σx̄=0.002) on Chrome-
book1, 13.03 MBs−1 (n=10, σx̄=0.003) on Chromebook2,
18.39 MBs−1 (n=10, σx̄=0.006) on the OnePlus 5T and
46.55 MBs−1 (n=10, σx̄=0.455) on the T490s.

Finally, we evaluated the correctness of the solver by gen-
erating physical address ranges of 512 pages consisting of
uniformly generated contiguous memory blocks of up to 128
pages. This memory range is transformed via a DRAM ad-
dressing functions into a bank access pattern, where we addi-
tionally scrambled the bank index. We vary the pattern length
that the solver receives as input and slide the solver over the
whole memory range and compute the F-score metric. The
solver achieves an average F-score of 0.97 with a bank ac-
cess pattern length of 64 samples and an average scanning
speed of 1.079 MBs−1. Further details on performance and
correctness of the functions are provided in Appendix C.

6.2 C2: Alternative to Memory Templating
Due to semiconductor production variances, some cells are
more susceptible to Rowhammer than others [54]. Because
of that, most Rowhammer bit flips are reproducible, and their
direction (0 → 1 or 1 → 0) is fixed [31] as well. The affected
systems (cf. Table 1) use LPDDR4x DRAM with ECC with
a typical single-error-correction code6. We empirically veri-
fied this with our observation that we see no single, but only
double bit flips. The reason is that the ECC memory requires
at least two bit flips to show an effect within a code word.
Otherwise, the bit flip is corrected and not exploitable. Fig-
ure 6 visualizes this effect with 8 data bits (parity bits are
not shown). Therefore, we propose two techniques for the

6We have not seen any freezes due to error detection, indicating that it is
only single-error correction with no support for double-error detection.

F−N−VN+F+

F−N−VN+F+F−N−VN+F+

1 2 3 4 5 6 7 8 9 10 11

Figure 7: The zebra pattern used for Blind-Hammering. No-
tice how the near aggressors and far aggressors change de-
pending on the victim row.

Half-Double Attack to work around this data dependency, an
improved templating technique for ECC memory, and Blind-
Hammering, which does not require any bit flip templating.

ECC-aware Templating. Classic memory templating fills
the aggressor rows with a specific byte value and fills the
victim row with the inverse of this value. During our exper-
iments, we find many weak cells when filling the aggressor
rows with 0x55 and the victim row with 0xaa. However,
when moving to the next stage of the exploit where the vic-
tim row is filled with PTEs, we initially no longer observed
any flips. The reason for this is the one outlined before and
illustrated in Figure 6: Bit flips on ECC memory depend on
the data that is stored in the cells [34]. Therefore, we need to
adapt the templating phase to incorporate a presumed struc-
ture of the data we target, i.e., fake PTEs when targeting
page-frame numbers. Hence, during templating, we fill the
victim rows with fake PTEs where the page-frame number
is filled as in the regular templating approach, e.g., we fill
the aggressor rows with 0x55555555555555 and victim rows
with 0x68000AAAAAAFD3. We keep track of all addresses that
produce flips at the offset of the page-frame number field
during the evaluation. Afterwards, we use these addresses to
induce bit flips in a target page placed in the victim row.

Blind-Hammering. The disadvantage of ECC-templating is
that it requires precise knowledge of the target data. Blind-
Hammering generalizes our attack further and makes no as-
sumptions about the target data in the victim row. Instead, it
circumvents the ECC data dependency problem by not de-
pending on the repeatability of the bit flips over changing
victim data. Blind-Hammering skips the templating phase
and hammers as many rows as possible with real page ta-
bles in potential victim rows. Blind-Hammering creates a
zebra pattern (cf. Figure 7) by mapping contiguous memory
(cf. Section 6.1) and then unmapping parts of the allocated
memory to make room for the victim rows shown in blue. In
essence, it performs the templating directly on the inaccessi-
ble victim rows and using the victim’s own data for the attack.
Consequently, the trade-off for Blind-Hammering is similar
as for the templating phase. While Blind-Hammering enables
targeting ECC memory, it has a clear drawback: The attacker
cannot simply read the data anymore to check whether a bit
has flipped. We elaborate this problem further in Section 6.3,
motivating challenge C4 that we then solve in Section 6.4,
i.e., the need to verify that a bit has flipped in an exploitable
way without crashing the attacker process.

Evaluation. We evaluate Blind-Hammering on Chromebook2
and observed 30 exploitable bit flips (13 flips 0 → 1, 17 flips
1 → 0) within 11.6 h. This gives us an average of 2.59 ex-
ploitable flips per hour, or 23.2 minutes on average to pro-
duce an exploitable flip. We used the ratio of overall bit flips
to exploitable bit flips of the Chromebook2, to estimate the
exploitation time on our other devices. On the OnePlus 5T it
takes approximately 6.4 h, on the HTC U11 4.0 h and on the
Chromebook1 4.2 h, to flip an exploitable bit in a PTE.

6.3 C3: Memory Preparation (Spraying)
In this section, we fill the memory of the target systems with
our attack targets, the PTEs. Modern ARM-based platforms,
i.e., mobile platforms, can reduce the levels of page tables
from the default of 4 page-table levels to only 3 page-table
levels to optimize the performance of page walks (on TLB
misses). However, this also decimates the available virtual
address space for every process by a factor of 512. Since
the affected devices (cf. Table 1) use this approach, we only
have a virtual address space of 512 GB available. While this
is still much more than the amount of physical memory the
device has, it severely limits the practicality of page-table
spraying using file mappings. Previous work has used file
mappings and other memory mappings to fill memory with
page tables [19, 44, 48, 51]. However, with only 512 GB of
virtual address space available, we can only create mappings
requiring less than 262 144 page tables, i.e., taking up 1 GB of
memory. Thus, we can only occupy, e.g., 25 % of the available
4 GB on the Chromebooks. This increases the attack duration
by a factor of more than 8 (since not all pages can be mapped).

To bypass this aggravating effect, we propose a new tech-
nique called Child Spray. Instead of spraying only our own
virtual memory with mappings to allocate page tables, Child
Spray spawns child processes that share memory with the par-
ent process. The shared memory is only once in the physical
memory, but each process has its own page-table hierarchy,
effectively spraying the physical memory with page tables.
The only disadvantage of Child Spray is that a hammered
PTE can point to a page table of a child process, leading to
extra engineering steps for successful exploitation.

With this spraying approach and Blind-Hammering, bit flips
can now occur in any page table any time, as we don’t know
which cells are vulnerable and where page tables are. We
can check page tables periodically for changes by checking
whether the shared memory mapping still has its expected
content. However, as Blind-Hammering bit flips in page tables
are, in contrast to templated bit flips, not predictable, PTEs
often become invalid. Consequently, we need a method to test
whether a bit flip in a page table occurred without crashing
the attacker process. We solve this challenge in the following.
Evaluation. The Child Spray runs with two child
processes at 79.39 MBs−1 (n=10, σx̄=0.24) on Chrome-
book1, 54.09 MBs−1 (n=10, σx̄=1.437) on Chromebook2,

1 if (misprediction)
2 access(probe + (pointer[0] & 1) + ... + (pointer[4] & 1));
3 if (flush_reload(probe) == CACHE_HIT)
4 // Report valid address

Listing 1: Example code for our Speculative Oracle. The
attacker learns whether pointer[0] till pointer[4] are ac-
cessible memory locations or would raise a CPU fault. If a
fault is detected, the attacker probes each address individually.

25.42 MBs−1 (n=10, σx̄=0.346) on the OnePlus 5T, and
99.88 MBs−1 (n=10, σx̄=0.456) on the Lenovo T490s. Thus,
the memory is filled with page tables within less than 1 minute
on average. The Child Spray on the T490s is not required as
the system supports 4 page table levels.

6.4 C4: Robust Bit-Flip Verification
With Blind-Hammering we cannot verify the success of a bit
flip. Reading the corrupted data (as templating does) is not
possible as it is not in our process. Accessing potentially re-
mapped memory often crashes the attacker’s process due to
corrupted PTEs (e.g., mapped to an invalid physical memory
region, or setting of a reserved bit), as the OS detects this
corruption upon a faulting access. Consequently, we develop
a new technique, combining the Half-Double Rowhammer
attack with a Spectre [33] side-channel mechanism allowing
us to safely determine whether an address can be accessed or
whether accessing it would crash the attacker’s process. With
the Speculative Oracle, we can check whether a mapping is
corrupted or not without triggering the OS’s own detection.

6.4.1 Speculative Oracle

If the physical page-frame number points to an illegal mem-
ory location, a read or write to it raises a CPU fault, e.g., a
Data Abort [2]. As CPU faults cannot succeed during specu-
lative execution on systems that are not susceptible to Melt-
down [37], we can use speculative execution to determine
whether the bit flip corrupted the entry in a defective way
or, otherwise, in an exploitable way. This allows us to avoid
accesses that would make the OS terminate our attack process.

Our Speculative Oracle uses Spectre similar to Lipp et al.
[37] in the Meltdown attack for exception suppression on an
ARM-based mobile phone. Our Chromebooks use a Mediatek
MT8183 SoC with ARM cores that are not vulnerable to
Meltdown [3]. Thus, loads depending on the faulting load are
not user-visible executed on this ARM microarchitecture.

Our Speculative Oracle uses exception suppression by mis-
training branch predictors to execute the probing code tran-
siently [37], cf. Listing 1. We transiently load probe with an
offset based on pointer, which is the address to test. There
are two possible cases for the Speculative Oracle: pointer is
valid and, hence, its value forwarded to the probe load. Thus,

C1

10s ... 4m

C3

< 1m

C2

≈23m

C4 C4

≈22m ≈11m

root

Figure 8: The timing durations for the end-to-end exploit
executed on the Chromebook2. For Challenges C1 and C4
faster alternatives might be available (cf. Sections 6.1 and 6.4).
The overall runtime is bound by Challenge C2, i.e., the time
it takes to induce an exploitable bit flip. Afterwards it takes
on average halve C4 to find the bit flip.

probe is loaded into the cache. pointer is invalid and, hence,
the probe load is not executed and, thus, not loaded into the
cache. Using Flush+Reload [57], we determine whether probe
is cached or not and, thus, whether pointer is valid or not.

As our probing gadget runs in the transient domain, the
misspeculated branch may be corrected before the load is
issued or the branch may not be mispredicted at all. Thus,
probe may not be cached even when pointer is valid. Hence,
we repeat the Spectre attack several times to more likely see
a cache hit if pointer is valid. However, if pointer is invalid,
probe can never be loaded into the cache and, hence, we
infer pointer to be invalid with a high probability if we can
not observe a cache hit after a certain number of repetitions.
Additionally, we can probe multiple addresses at once by
chaining them as additional dependencies to the probe address
as shown in Listing 1. This significantly improves the runtime
by allowing to coarsely scan multiple address candidates at
once before probing the candidates separatetely.

Evaluation. We evaluate the success rate and runtime of our
Speculative Oracle. Since a cache hit on probe can only be
observed if the address under test is valid, our method has a
false negative rate (classifying an invalid address as valid) of
zero. Therefore, we can only misclassify a valid address as
invalid if we do not observe a cache hit within our repeated
trials of triggering the probe gadget.

We evaluated the success rate of the target address clas-
sification and the runtime for different numbers of Spectre
attacks. We probe 5 addresses at once where either all of
them are valid or one random one of them is invalid. We re-
peat the experiment 10 000 times, 5000 times for valid and
5000 times for invalid addresses. With a single probe try, we
already achieve a success rate of 99.01 % with an average run-
time of 0.008 ms (n=10 000, σx̄=0.002) on the Chromebook1.
Chromebook2 achieves 99.68 % success rate with two tries
and an average runtime of 0.025 ms (n=10 000, σx̄=0.006).
On the OnePlus 5T we achieve a success rate of 99.24 % with
three tries and a runtime of 0.034 ms (n=10 000, σx̄=0.011).
We also evaluated this technique on x86-based systems where
we used the RSB misprediction for performance reasons. The

Table 8: Overview of the challenges, their alternatives and
availability across multiple platforms.

Alternative Requirement Available on Prior Work

C1

Physical Address Access OS-enabled Linux-based Systems [48]
Huge Pages OS-enabled Linux-based Systems [13, 19]
Bank Differences Known Functions DDR-based Memory [34, 47]
Solver XOR-based Functions DDR-based Memory [34, 47]

C2
Templating no ECC Systems without ECC [8, 13, 15, 19, 44, 48, 51]
Blind-Hammering Half-Double affected see Tables 1 and 3 -
ECC-Aware Templating Half-Double affected see Tables 1 and 3 [11, 34]

C3 Spray Children fork ARM64, x86 -
Spray Page Tables 4 Page Table Levels ARM64, x86 [19, 44, 48, 51]

C4 vfork OS-enabled Linux-based Systems
Speculative Oracle Hardware ARM64, x86 -

Lenovo T490s achieves a success rate of 99.94 % with 20
tries and a runtime of 0.018 ms (n=10 000, σx̄=0.004).

Hence, since almost all addresses remain valid and without
bit flips, the verification with our Speculative Oracle con-
sumes 19.0 minutes of CPU time to scan 2 GB of PTEs for
bit flips. However, this scan can run on a second core in the
background during Blind-Hammering (see Figure 8).
Architectural Alternative. As an alternative to the Specu-
lative Oracle, we propose an architectural approach, namely
using the vfork system call. vfork creates, similarly to fork,
an exact copy of the calling process with the only difference
that the page tables are not copied. Its primary purpose is
to provide a faster version of fork for child processes that
immediately execute another process via exec. Our vfork
oracle creates a child process that scans 2 GB of PTEs for
bit flips. The child process gets killed by the kernel if the
page translation is corrupted and returns cleanly otherwise.
By checking how the child process died, we know whether
the address range is safe to access. If the child process was
killed we use shared memory to communicate the last address
accessed to the parent process. This minimizes the number of
vfork invocations down to one per corrupted PTE.
Evaluation. The vfork alternative scans 19.45 GBs−1

(n=10, σx̄=0.039) on the Chromebook2, 256.47 GBs−1 (n=10,
σx̄=3.971) on the T490s. The bandwidth numbers approach
nearly the maximum memory bandwidth of the systems.
Hence, with this approach the verification consumes merely
56 s of CPU time on the Chromebook2 and only 4.3 s on the
T490s to scan 2 GB of PTEs for bit flips. The disadvantage of
this approach is that it is trivial to mitigate by disabling our
specific use of vfork in the kernel, e.g., as on the OnePlus 5T
where the vfork instruction is aliased to fork. Nevertheless,
the speculative oracle is still available.

6.5 End-to-End Attack Evaluation

Figure 8 shows the combined runtimes of all attack steps,
with less than 5 minutes for contiguency (C1) and spraying
(C3). Blind-Hammering (C2) takes on average 23.2 minutes
on our Chromebook2 to find an exploitable bit flip. Fourth,
the Speculative Oracle (C4) runs in parallel to the Blind-
Hammering and consumes 22 minutes. After the bit flip, the

exploit cleans up, scans physical memory, and sets up page
tables for convenient arbitrary read and write, in less than
3 minutes. Thus, the total runtime usually stays below 45
minutes but varies with the time until an exploitable bit flip
occurs. On our other devices the total exploitation time is
primarily determined by the time it takes to flip an exploitable
bit, as the other exploit steps are negligible fast in comparison
(cf. Section 6.2). Table 8 summarizes the challenges and the
requirements for the solutions to be applicable.

7 Discussion

Recently, TRRespass [15] has fuzzed hammering patterns and
showed that various TRR-protected DDR4 DIMMs are still
susceptible to Rowhammer. The generated many-sided (3- to
19-sided) patterns worked on 13 out of 42 modules tested.
The underlying effect they exploit is an optimization in TRR
implementations, where DRAM modules count accesses only
to a limited number of rows, which the attacker can exhaust.
TRR then loses track of the number of accesses to near ag-
gressor (distance-1) rows. Compared with the multi-sided
Rowhammer patterns from TRRespass [15] and Smash [13],
our Half-Double patterns do not rely on the depletion of TRR
resources. Instead, the patterns directly incorporate the TRR
refresh mechanism into the attack. Therefore, our patterns
even work where the TRR mechanism works perfectly for
detecting and mitigating distance-1 Rowhammer.
Applicability to other Systems (including x86). We eval-
uated all building blocks of the end-to-end attack on other
systems as well, in particular x86. Half-Double also exists
on TRR-protected DDR4 memory on x86 systems, Some
x86 processors, e.g., Xeon, use pTRR to introduce similar
accesses to near aggressors and, hence, could be used in the
Half-Double Attack attack. The contiguous memory detec-
tion is also applicable both on other Arm- and x86-based
system. Blind-Hammering also works on both x86 and Arm.
Spraying on x86 systems is easier as no child processes are
required and techniques from prior work still apply. We show
that the speculative oracle can either be adapted (e.g., using
Spectre-RSB instead of Spectre-PHT, or adapting thresholds)
to the specific system or be replaced by vfork which does
not depend on microarchitectural behavior.
Mitigations. To mitigate Half-Double we discuss a short-
term defense to protect the next generation of DRAM chips
and a more generic Rowhammer defense. First, we propose
(p)TRR±2, extending the existing victim-oriented refresh-
based mitigations also to include distance-2 aggressors. This
mitigation would minimize the hardware changes as only the
inhibitor of a TRR-based design needs to be adapted to re-
fresh additional rows. Furthermore, as the results from Table 2
suggest, a more sophisticated design would refresh distance-2
rows with a lower frequency than distance-1 rows. Second,
as DRAM cell density will further increase, we assume that
the influence of the Half-Double effect will rise, increasing

the need for a more generic Rowhammer protection. Sailesh-
war et al. [46] proposed to replace victim-oriented defenses
like TRR with an attacker-oriented defense. They propose to
swap attacker rows after a certain activation count is reached
with another row within the same bank using a permutation
layer. This mechanism statistically breaks the locality be-
tween aggressor and victim rows and makes it therefore highly
unlikely to continuously hammer the same victim.

To harden affected systems against our end-to-end exploit,
we propose to tackle the contiguous memory allocation, and
the bit flip verification (cf. Sections 6.1 and 6.4). If the un-
derlying system allocator ensures that the allocation never
returns continuous pages, the attacker has to resort to a brute
force approach to find the correct far aggressors to induce
Half-Double bit flips. Furthermore, the vfork system call can
be aliased to fork removing this gadget from the system.

8 Conclusion

We presented a new and unmitigated Rowhammer effect, Half-
Double. Half-Double induces errors in a victim by combining
a large number of accesses to a “far” aggressor (at distance
two) with just a handful (dozens) to a “near” aggressor (at dis-
tance one). This is problematic on DRAM with mitigative re-
freshing as a Rowhammer protection (e.g., “TRR”), as protec-
tions implicitly access the near aggressors and, thus, instead
of preventing Rowhammer assist Half-Double in inducing bit
flips. We evaluate Half-Double thoroughly and demonstrate
its practical relevance in an end-to-end Rowhammer attack.
To overcome the challenges for an end-to-end attack on re-
cent off-the-shelf devices, we used side-channel attacks, a
novel technique called Blind-Hammering, a novel page table
spraying technique, and a Spectre-based crash-resistant bit-
flip verification. Our end-to-end proof-of-concept attack, the
Half-Double Attack, gives an attacker arbitrary read and write
access to the entire memory on fully up-to-date systems, as
we showcase on Chromebooks with ECC- and TRR-protected
LPDDR4x memory, in only 45 minutes average runtime.

Acknowledgments

We thank the anonymous reviewers, especially our shepherd,
Shaanan Cohney, for their guidance, comments and sugges-
tions. Part of the funding was provided by a generous gift
from Amazon. Any opinions, findings, conclusions, or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding parties.

References

[1] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and
Todd Austin. When good protections go bad: Exploiting

anti-DoS measures to accelerate Rowhammer attacks.
In HOST, 2017.

[2] ARM. ARM Architecture Reference Manual ARMv8.
ARM, 2013.

[3] ARM. Vulnerability of Speculative Proces-
sors to Cache Timing Side-Channel Mech-
anism, 2018. URL: https://developer.
arm.com/support/arm-security-updates/
speculative-processor-vulnerability.

[4] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek,
Rui Qiao, Reetuparna Das, Matthew Hicks, Yossi Oren,
and Todd Austin. ANVIL: Software-based protection
against next-generation Rowhammer attacks. ACM SIG-
PLAN Notices, 2016.

[5] K.S. Bains, J.B. Halbert, C.P. Mozak, T.Z. Schoenborn,
and Z. Greenfield. Row hammer refresh command,
January 2014. US Patent App. 13/539,415. URL:
https://google.com/patents/US20140006703.

[6] Alessandro Barenghi, Luca Breveglieri, Niccolò Izzo,
and Gerardo Pelosi. Software-only reverse engineer-
ing of physical dram mappings for rowhammer attacks.
In International Verification and Security Workshop
(IVSW), 2018.

[7] Sarani Bhattacharya and Debdeep Mukhopadhyay. Cu-
rious Case of Rowhammer: Flipping Secret Exponent
Bits Using Timing Analysis. In CHES, 2016.

[8] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Dedup Est Machina: Memory Deduplication
as an Advanced Exploitation Vector. In S&P, 2016.

[9] Ferdinand Brasser, Lucas Davi, David Gens, Christo-
pher Liebchen, and Ahmad-Reza Sadeghi. CAn’t touch
this: Software-only mitigation against Rowhammer at-
tacks targeting kernel memory. In USENIX Security
Symposium, 2017.

[10] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz.
Real time detection of cache-based side-channel attacks
using hardware performance counters. ePrint 2015/1034,
2015.

[11] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. Exploiting Correcting Codes: On the Effec-
tiveness of ECC Memory Against Rowhammer Attacks.
In S&P, 2019.

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient smt solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[13] Finn de Ridder, Pietro Frigo, Emanuele Vannacci,
Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi.
SMASH: Synchronized Many-sided Rowhammer At-
tacks From JavaScript. In USENIX Security Symposium,
2021.

[14] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Grand Pwning Unit: Accelerating Mi-
croarchitectural Attacks with the GPU. In S&P, 2018.

[15] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor
van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert
Bos, and Kaveh Razavi. TRRespass: Exploiting the
Many Sides of Target Row Refresh. In S&P, 2020.

[16] Mohsen Ghasempour, Mikel Lujan, and Jim Garside.
ARMOR: A Run-time Memory Hot-Row Detector,
2015. URL: http://apt.cs.manchester.ac.uk/
projects/ARMOR/RowHammer.

[17] Mel Gorman. Understanding the Linux Virtual Memory
Manager. Prentice Hall Upper Saddle River, 2004.

[18] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another Flip in the Wall
of Rowhammer Defenses. In S&P, 2018.

[19] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer.js: A Remote Software-Induced Fault At-
tack in JavaScript. In DIMVA, 2016.

[20] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: A Fast and Stealthy
Cache Attack. In DIMVA, 2016.

[21] Christian Helm, Soramichi Akiyama, and Kenjiro Taura.
Reliable reverse engineering of intel dram addressing
using performance counters. In Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems (MASCOTS). IEEE, 2020.

[22] Nishad Herath and Anders Fogh. These are Not Your
Grand Daddys CPU Performance Counters – CPU Hard-
ware Performance Counters for Security. In Black Hat
Briefings, 2015.

[23] Rei-Fu Huang, Hao-Yu Yang, Mango C.-T. Chao, and
Shih-Chin Lin. Alternate hammering test for application-
specific DRAMs and an industrial case study. In Annual
Design Automation Conference (DAC), 2012.

[24] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
MASCAT: Stopping microarchitectural attacks before
execution. ePrint 2016/1196, 2017.

[25] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz
Krebbel, Berk Gulmezoglu, Thomas Eisenbarth, and

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://google.com/patents/US20140006703
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer

Berk Sunar. SPOILER: Speculative Load Hazards Boost
Rowhammer and Cache Attacks. In USENIX Security
Symposium, 2019.

[26] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo
Kim. SGX-Bomb: Locking Down the Processor via
Rowhammer Attack. In SysTEX, 2017.

[27] Jedec Solid State Technology Association. Low Power
Double Data Rate 3, 2013. URL: http://www.jedec.
org/standards-documents/docs/jesd209-4a.

[28] JEDEC Solid State Technology Association. Low Power
Double Data Rate 4, 2017. URL: http://www.jedec.
org/standards-documents/docs/jesd209-4b.

[29] Matthias Jung, Carl C Rheinländer, Christian Weis, and
Norbert Wehn. Reverse engineering of drams: Row
hammer with crosshair. In International Symposium on
Memory Systems, 2016.

[30] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K
Qureshi. Architectural support for mitigating row ham-
mering in DRAM memories. IEEE Computer Architec-
ture Letters, 14, 2015.

[31] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping Bits in Memory Without
Accessing Them: An Experimental Study of DRAM
Disturbance Errors. In ISCA, 2014.

[32] Kirill A. Shutemov. Pagemap: Do Not Leak Phys-
ical Addresses to Non-Privileged Userspace, 2015.
URL: https://git.kernel.org/cgit/linux/
kernel/git/torvalds/linux.git/commit/?id=
ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce.

[33] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In S&P, 2019.

[34] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yu-
val Yarom. RAMBleed: Reading Bits in Memory With-
out Accessing Them. In S&P, 2020.

[35] Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh, and
Jung Ho Ahn. TWiCe: preventing row-hammering by
exploiting time window counters. In ISCA, 2019.

[36] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz,
Daniel Gruss, Clémentine Maurice, Lukas Raab, and
Lukas Lamster. Nethammer: Inducing Rowhammer
Faults through Network Requests. arXiv:1711.08002,
2017.

[37] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security Symposium,
2018.

[38] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu.
Raidr: Retention-aware intelligent dram refresh. ACM
SIGARCH Computer Architecture News, 40(3):1–12,
2012.

[39] Onur Mutlu. The RowHammer problem and other issues
we may face as memory becomes denser. In Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2017.

[40] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham,
Jung Ho Ahn, and Jae W Lee. Graphene: Strong yet
Lightweight Row Hammer Protection. In MICRO, 2020.

[41] Matthias Payer. HexPADS: a platform to detect “stealth”
attacks. In ESSoS, 2016.

[42] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploiting
DRAM Addressing for Cross-CPU Attacks. In USENIX
Security Symposium, 2016.

[43] Salman Qazi, Yoongu Kim, Nicolas Boichat,
Eric Shiu, and Mattias Nissler. Introduc-
ing Half-Double: New hammering technique
for DRAM Rowhammer bug, 2021. URL:
https://security.googleblog.com/2021/05/
introducing-half-double-new-hammering.html.

[44] Rui Qiao and Mark Seaborn. A New Approach for
Rowhammer Attacks. In International Symposium on
Hardware Oriented Security and Trust, 2016.

[45] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,
Cristiano Giuffrida, and Herbert Bos. Flip Feng Shui:
Hammering a Needle in the Software Stack. In USENIX
Security Symposium, 2016.

[46] Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi,
and Prashant J Nair. Randomized row-swap: mitigating
row hammer by breaking spatial correlation between
aggressor and victim rows. In ASPLOS, pages 1056–
1069, 2022.

[47] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In
DIMVA, 2017.

[48] Mark Seaborn and Thomas Dullien. Exploiting the
DRAM rowhammer bug to gain kernel privileges. In
Black Hat Briefings, 2015.

http://www.jedec.org/standards-documents/docs/jesd209-4a
http://www.jedec.org/standards-documents/docs/jesd209-4a
http://www.jedec.org/standards-documents/docs/jesd209-4b
http://www.jedec.org/standards-documents/docs/jesd209-4b
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html
https://security.googleblog.com/2021/05/introducing-half-double-new-hammering.html

[49] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Defeating software mitigations against
rowhammer: a surgical precision hammer. In RAID,
2018.

[50] Andrei Tatar, Radhesh Krishnan, Elias Athanasopou-
los, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Throwhammer: Rowhammer Attacks over the Network
and Defenses. In USENIX ATC, 2018.

[51] Victor van der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clémentine Maurice, Giovanni Vi-
gna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
Drammer: Deterministic Rowhammer Attacks on Mo-
bile Platforms. In CCS, 2016.

[52] Victor van der Veen, Martina Lindorfer, Yanick Fratan-
tonio, Harikrishnan Padmanabha Pillai, Giovanni Vigna,
Christopher Kruegel, Herbert Bos, and Kaveh Razavi.
GuardION: Practical Mitigation of DMA-Based Row-
hammer Attacks on ARM. In DIMVA, 2018.

[53] Saru Vig, Siew-Kei Lam, Sarani Bhattacharya, and Deb-
deep Mukhopadhyay. Rapid detection of rowhammer
attacks using dynamic skewed hash tree. In Workshop
on Hardware and Architectural Support for Security and
Privacy, 2018.

[54] Andrew J Walker, Sungkwon Lee, and Dafna Beery. On
dram rowhammer and the physics of insecurity. IEEE
Transactions on Electron Devices, 2021.

[55] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan
Custodio, Thomas Eisenbarth, and Berk Sunar. Jack-
Hammer: Efficient Rowhammer on Heterogeneous
FPGA-CPU Platforms. arXiv:1912.11523, 2019.

[56] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu
Teodorescu. One bit flips, one cloud flops: Cross-vm row
hammer attacks and privilege escalation. In USENIX
Security Symposium, 2016.

[57] Yuval Yarom and Katrina Falkner. Flush+Reload: a
High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In USENIX Security Symposium, 2014.

[58] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee.
CloudRadar: A Real-Time Side-Channel Attack Detec-
tion System in Clouds. In RAID, 2016.

[59] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya
Nepal, and Zhi Wang. TeleHammer: Cross-Privilege-
Boundary Rowhammer through Implicit Accesses.
arXiv:1912.03076, 2019.

10 11 12 13 14 15

1

2

3

Fraction of Activation to N+ in ppm

Fl
ip

s
in

V

((F+ →D)β
→N+)∞

Figure 9: Number of observed bit flips in the victim over the
fraction of accesses to the near aggressor (N+) in 1 million
accesses for the single-sided case.

0 5 10 15 20 25 30 35
0
2
4
6

Fraction of Activation to N+ and N− in ppm

Fl
ip

s
in

V

((F+ →F−)β
→N+ →N−)∞

Figure 10: Number of observed bit flips in the victim over
the fraction of accesses to the near aggressors (N+, N−) in 1
million accesses for the double-sided case.

A Summary of the Evaluated Memory Parts

Table 9 provides a comprehensive list of all DDR4, LPDDR4
and LPDDR4x parts we obtained and evaluated in this paper.
First, we divide the parts into the DIMMs analyzed in Sec-
tion 5.3 via the ZCU104 FPGA platform. For these DIMMs
we have complete control over DRAM addressing and refresh
intervals to evaluate the performance of distance-1, distance-
2, and Half-Double-based hammering (cf. Tables 2, 4 and 5).
Second, we evaluate the mobile devices and the PC parts
in Section 5.1, where we first reverse engineer the DRAM
addressing functions [42] and use the Quad pattern for ham-
mering. Table 1 shows the resulting bit flips of the affected
devices. We observed overall 7 parts that are affected by Half-
Double. For the unaffected mobile and PC parts, we can only
speculate whether the underlying memory is Half-Double re-
sistant or whether unknown row scrambling prevented mount-
ing the Quad pattern. Hence, we cannot conclude that the
underlying memory is indeed unaffected from Half-Double.

B Alternative Representation for Bit Flips un-
der Simulated TRR

In this section, we present a different representation for Fig-
ure 4 and Figure 5. Instead of using the β parameter, we plot
the number of bit flips observed in the victim over the fraction
of near aggressor in 1 million accesses. Figure 9 shows this
data for the single-sided case (i.e., the same data as Figure 4).
Figure 10 shows this data for the double-sided case (i.e., the
same data as Figure 5),

Table 9: All evaluated memory parts, including their production date, the underlying memory structure, and information of the
test system or operating system we evaluated them on. We indicate parts evidently affected by Half-Double.

Name Year-Week CPU / SoC RAM Size Manufacturer Test System / Operating System Half-Double

D
IM

M
s M1 2019-48 - DDR4 4 GB Confidential ZCU104 FPGA Platform ✗

M2 2020-32 - DDR4 4 GB Confidential ZCU104 FPGA Platform ✓
M3 2020-42 - DDR4 8 GB Confidential ZCU104 FPGA Platform ✓

M
ob

ile
D

ev
ic

es

Chromebook1 2020-01 MT8183 LPDDR4x 4 GB Unknown Baseboard Kukui with Chrome OS Version 90.0.4430.218 ✓
Chromebook2 2020-01 MT8183 LPDDR4x 4 GB Unknown Baseboard Kukui with Chrome OS Version 90.0.4430.218 ✓
Pixel 3 2018-40 SDM845 LPDDR4x 4 GB Unknown Android 11 LineageOS 18.1 with Kernel Version 4.9 ✓
HTC U11 2017-18 MSM8998 LPDDR4x 4 GB Unknown Android 9 with Kernel Version 4.4 ✓
OnePlus 5T 2017-47 SDM835 LPDDR4x 6 GB Unknown Android 11 LineageOS 18.1 with Kernel Version 4.4 ✓
Samsung S9 (SM-G960F/DS) 2018-10 Exynos 9810 LPDDR4x 4 GB Unknown Android 10 with Kernel Version 4.9 ✗
Samsung S7 (SM-G935F) 2016-10 Exynos 8890 LPDDR4 4 GB Unknown Android 8 with Kernel Version 3.18 ✗

PC

Lenovo T490s 2019-13 Intel i5-8265U DDR4 16 GB Samsung Ubuntu 20.04.3 LTS with Kernel Version 5.11 ✗
Minisforum TL50 MiniPC 2021-43 Intel i5-1135G7 LPDDR4 16 GB SK Hynix Ubuntu 20.04.3 LTS with Kernel Version 5.13 ✗
Minisforum X35G MiniPC 2020-43 Intel i3-1005G1 LPDDR4 16 GB Micron Ubuntu 20.04.1 LTS with Kernel Version 5.4 ✗

C Contiguous Memory Solver

This section details the implementation of the solver and
additional performance and correctness analysis based on the
reconstructed DRAM addressing functions of the real devices.
Solver Implementation. The solver is implemented with
the Z3 theorem prover [12]. To detect continuous memory
regions, we first implement the structure of xor-based DRAM
addressing functions as constraints. The solver solves for N
xor masks we denote as Mi f or 0 ≤ i < N and the base address
of the contiguous physical range B. The general idea is to
increment the base B for each of the given input samples, i.e.,
the pages, as if the range would be contiguous, resulting in
unsatisfiable constraints if not. Each of the input samples xi
comes from precisely one set Xi, where xi is the current sam-
ple index. First, we define the function Fi(x) that computes
the i-th set bit for the x-th page in the physical memory range:

Fi(x) =⨁(Mi ∧ (B+ x ⋅0x1000)) .

We denote ⨁(x) as operation xor-ing all bits of x and ∧ as
the bitwise and operation. Second, we define a set index as a
binary concatenation of each of the set’s bits:

S(x) = F0(x) ∥ ⋅ ⋅ ⋅ ∥ FN−1(x).
For each of the pages contained in one set we enforce that the
set index is the same as of the first member of the set, i.e., the
first page of the set x0

i :

assert(S(xi) = S(x0
i))∀xi ∈ Xi.

Finally, we restrict that all other page offset not contained in
one set must have a different set index:

assert(S(y) ≠ S(x0
i))∀y ∉ Xi.

The underlying range can be generated via a xor-based
DRAM addressing function if these constraints are satisfied.
If unsatisfied, the memory region is not contiguous or the
addressing functions are not xor-based.

0 20 40 60 80 100 120 140

0.6

0.8

1

Input Pattern Length

F-
Sc

or
e

Chromebook Samsung Galaxy S9 Pixel 3

Figure 11: F-Score of our solver-based contiguency detection
for different pattern lengths.

Evaluation. We verify the correctness of the solver by ran-
domly concatenating contiguous ranges with up to 128 pages
and converting these physical pages into bank access patterns
with real reverse-engineered DRAM addressing functions. In
the evaluation, we slide the solver over this generated pattern
and vary the number of input samples the solver receives. Fig-
ure 11 shows the resulting F-score metric for different DRAM
addressing functions and various pattern lengths. We observe
that the F-score increases with increasing pattern length. This
is as expected since the solver internally has more constraints
to rely on. We see that with a pattern length of 128 pages, the
solver achieves an F-score of > 0.99 for each pattern.

A Artifact Appendix

A.1 Abstract
This paper presents Half-Double, a new Rowhammer effect
extending the reach of Rowhammer beyond the immediate
neighbors. We show that this effect can not only circumvent
current state-of-the-art mitigations like TRR, but defensive
refreshes to distance-1 rows also assist Half-Double. The
general idea is to induce flips into a victim by combining
many distance-2 accesses with a few distance-1 accesses.

In the artifact evaluation, we present experiments to under-
line the impact of Half-Double. Due to obligatory constraints,
we cannot share parts of the initial root-cause analysis. Nev-
ertheless, the artifacts presented show all the necessary steps
to mount the Half-Double Attack on commodity systems pro-
tected by TRR and ECC.

We split the artifacts into the described challenges, which
finally form the end-to-end exploit. First, the artifacts for
Challenge C1 “Memory Allocation” demonstrate three dif-
ferent ways to reconstruct contiguous memory. Second, for
Challenge C2 “Alternatives to Memory Templating”, we show
both ECC-aware hammering and Blind-Hammering and pro-
vide the utility to count the overall bitflips on a device. Third,
Challenge C3 “Memory Preparation” shows the Child Spray
technique to fill the memory with attackable data, i.e., page ta-
bles. Fourth, we provide the artifacts for C4 “Robust Bit-Flip
Verification”, namely the speculative oracle and the architec-
tural vfork alternative. Finally, the Half-Double Attack built
upon the previous parts to mount the end-to-end attack.

The end-to-end exploit is optimized for the chromeOS oper-
ating system and, more precisely, for our Chromebook setup.
Nevertheless, all the components are compileable for both
x86 and aarch64 architectures. We recommend ARM-v8 and
Intel x86 CPUs for this artifact evaluation.

A.2 Artifact check-list (meta-information)
• Program: We provide the programs and represent how

to install them.

• Compilation: We require gcc for cross-compilation.
Download instructions are provided.

• Run-time environment: We require a native Linux in-
stallation for compilation. Some artifacts can be directly
executed under Linux. For this purpose, we strongly rec-
ommend Ubuntu 20.04. For the end-to-end exploit, we
require a chromeOS installation. The provided installa-
tion instructions need internet access.

• Hardware: We require either Intel x86 CPUs or ARM-
v8 CPUs. Half-Double bitflips depend highly on the ac-
tual hardware and even differ between identical DRAM
modules.

• Execution: For executing some benchmarks, we require
a stable frequency.

• Security, privacy, and ethical concerns: Due to the
Half-Double bitflip effect, data corruption can occur
on the used system.

• Metrics: The benchmarks report nanosecond execution
time, data size in bytes, and throughput in mega- or giga-
bytes per second.

• Output: The artifacts print the results to the terminal.

• Experiments: We include the source code, build scripts,
and readmes describing the artifact and the process of
how to execute the benchmarks.

• How much disk space required (approximately)?:
Less than 1 GB.

• How much time is needed to prepare workflow (ap-
proximately)?: Below 4 hours.

• How much time is needed to complete experiments
(approximately)?: Up to two days, depending on the
hardware.

• Publicly available (explicitly provide evolving
version reference)?: https://github.com/iaik/
halfdouble

• Code licenses (if publicly available)?: MIT

• Archived (explicitly provide DOI or stable refer-
ence)?: https://github.com/iaik/halfdouble/
tree/ae

A.3 Description
A.3.1 How to access

Check out the Git repository from https://github.com/
iaik/halfdouble and follow the provided readmes.

A.3.2 Hardware dependencies

We recommend ARM-v8 CPUs with (LP)DDR4(x) DRAM
supporting both TRR and ECC, like the Chromebooks in the
paper. Most of the artifacts can also be executed on Intel x86
CPUs. Our experience showed that the susceptibility to Half-
Double is highly dependent on the used DRAM modules.

A.3.3 Software dependencies

We strongly recommend Ubuntu 20.04 as a platform for com-
pilation as we tested all the building steps there. The operating
system to execute the artifacts should either be an Ubuntu
or chromeOS operating system with root access for debug-
ging. The components of the paper have to be built from

the source. Hence the system requires tools for compiling
software (build-essentials on Ubuntu). Finally, access to
operating system interfaces as root is necessary for debugging,
e.g., /proc/self/pagemap and /dev/mem.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

During our experiments with Half-Double, we observed data
corruption in the operating system resulting in corrupted file
systems. Therefore, we highly recommend a fresh installa-
tion with an operating system image not used for personal
or important data. We never observed persistent damage on
the hardware. However, we cannot ensure this is generally
the case, but we find it highly unlikely to damage the used
hardware.

A.4 Installation
Follow the readmes in the repository’s top-level directory,
which will guide you through installing all the necessary tools
and components of the paper. The “Makefiles” should au-
tomate most of the process. However, we cannot rule out
that some parts might need manual adjusting, and therefore,
knowledge of C, C++, python3, bash, and Makefiles is benefi-
cial.

A.5 Experiment workflow
Each artifact contains a readme, the source code, and a build
script to build the source. After the binary is compiled, we
can reuse the build script to deploy the binary to the test
systems where the binary is executed. Note that some binaries
require additional arguments passed via the terminal. The
binary prints debug output to the terminal, and the results are
also reported in this way.

A.6 Evaluation and expected results
The evaluation is split into multiple parts. First, we use the pro-
vided Half-Double hammering tool to verify the results from
Table 1. The tool uses the Quad pattern to hammer and induce
flips on commodity devices, e.g., the provided Chromebooks.
The tool should report similar flip frequencies if performed
on the provided hardware. Second, we execute the artifacts of
Challenge C1 to verify the general functionality and the per-
formance numbers of Section 6.1 when detecting contiguous
memory. Third, for Challenge C2 we reuse the hammering

tool with a slightly different configuration to demonstrate both
Blind-Hammering and ECC-aware templating from Section
6.2. Fourth, Challenge C3 uses an executable to demonstrate
the Child spray of Section 6.3 to circumvent some ARM
CPUs’ reduced virtual address space and verify the perfor-
mance numbers. Finally, the artifacts of Challenge C4 scan
memory and test the bitflip verification of Section 6.4 if a
page table is corrupted.

A.7 Experiment customization
The artifacts use a timing side channel to find addresses be-
longing to the same DRAM bank. Therefore, the threshold of
the timing side channel is configurable and usually passed via
a command-line argument. We provide an additional utility to
evaluate this threshold empirically. Nevertheless, this thresh-
old might need manual adjustment. Finally, we can adjust
the number of repetitions of a benchmark and the performed
accesses in the hammer loop via compile-time parameters.

A.8 Notes
Rowhammer bitflips depend highly on the used DRAM, the
device’s battery state, and the environment. Similar to Ta-
ble 1, identical commodity systems can behave differently.
Therefore it is likely that results from the artifacts may differ.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

	Introduction
	Background
	DRAM Organization
	DRAM Address Reverse Engineering
	Rowhammer
	Mitigative Refreshes (a.k.a. ``TRR'')

	A Systematic Rowhammer Pattern Notation
	The Half-Double Effect and Exploit
	The Half-Double Effect
	The Half-Double Exploit

	Empirical Evaluation of Half-Double
	Half-Double on TRR-protected LPDDR4x
	Test System and DRAM Addressing Functions
	Evaluation of the Quad pattern

	Determining the Role of TRR
	Noise-free FPGA Experiments

	Half-Double Attack Exploit
	C1: Memory Allocation
	C2: Alternative to Memory Templating
	C3: Memory Preparation (Spraying)
	C4: Robust Bit-Flip Verification
	Speculative Oracle

	End-to-End Attack Evaluation

	Discussion
	Conclusion
	Summary of the Evaluated Memory Parts
	Alternative Representation for Bit Flips under Simulated TRR
	Contiguous Memory Solver

