

Who am I?

Moritz Lipp
PhD student @ Graz University of Technology

 @mlqxyz

 moritz.lipp@iaik.tugraz.at

1 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

https://twitter.com/mlqxyz
mailto:moritz.lipp@iaik.tugraz.at

Who am I?

Michael Schwarz
PhD student @ Graz University of Technology

 @misc0110

 michael.schwarz@iaik.tugraz.at

2 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

https://twitter.com/misc0110
mailto:michael.schwarz@iaik.tugraz.at

Who am I?

Daniel Gruss
PostDoc @ Graz University of Technology

 @lavados

 daniel.gruss@iaik.tugraz.at

3 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

https://twitter.com/lavados
mailto:daniel.gruss@iaik.tugraz.at

Team

• Anders Fogh

• Daniel Genkin

• Werner Haas

• Mike Hamburg

• Jann Horn

• Paul Kocher

• Stefan Mangard

• Thomas Prescher

• Yuval Yarom

4 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Let’s Read Kernel Memory from User Space!

Virtual Memory

Kernel Addresses

Non-canonical Addresses

User Addresses

Virtual Address Space

5 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Find something human readable, e.g., the Linux version

sudo grep linux_banner /proc/kallsyms
ffffffff81a000e0 R linux_banner

6 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

char data = *(char*) 0xffffffff81a000e0;
printf("%c\n", data);

7 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Compile and run

segfault at ffffffff81a000e0 ip 0000000000400535
sp 00007ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation

fault

8 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Compile and run

segfault at ffffffff81a000e0 ip 0000000000400535
sp 00007ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation

fault

8 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Compile and run

segfault at ffffffff81a000e0 ip 0000000000400535
sp 00007ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation

fault

8 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Compile and run

segfault at ffffffff81a000e0 ip 0000000000400535
sp 00007ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation

fault

8 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

9 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

9 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

9 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

9 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Still no kernel memory

• Privilege checks seem to work

• Maybe it is not that straight forward

• Back to the drawing board

10 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Still no kernel memory

• Privilege checks seem to work

• Maybe it is not that straight forward

• Back to the drawing board

10 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Still no kernel memory

• Privilege checks seem to work

• Maybe it is not that straight forward

• Back to the drawing board

10 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Still no kernel memory

• Privilege checks seem to work

• Maybe it is not that straight forward

• Back to the drawing board

10 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Operating Systems 101

Memory Isolation

Userspace Kernelspace

Applications
Operating
System Memory

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

11 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Memory Isolation

Userspace Kernelspace

Applications
Operating
System Memory

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

11 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Memory Isolation

Userspace Kernelspace

Applications
Operating
System Memory

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

11 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Paging

• CPU support virtual address spaces to isolate

processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames

using page tables

12 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Paging

• CPU support virtual address spaces to isolate

processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames

using page tables

12 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Paging

• CPU support virtual address spaces to isolate

processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames

using page tables

12 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Address Translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···
#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···
#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

13 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Address Translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···
#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···
#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

13 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Page Table Entry

P RW US WT UC R D S G Ignored

Physical Page Number

Ignored X

• User/Supervisor bit defines in which privilege level the page can be

accessed

14 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Direct-physical map

Physical memory

0 max

User

0 247

Kernel

−247 −1

• Kernel is typically mapped into every address space

• Entire physical memory is mapped in the kernel

15 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Direct-physical map

Physical memory

0 max

User

0 247

Kernel

−247 −1

• Kernel is typically mapped into every address space

• Entire physical memory is mapped in the kernel

15 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Loading an address

16 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Loading an address

16 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Loading an address

16 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Loading an address

16 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Loading an address

16 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Loading an address

16 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Side-channel Attacks

Side-channel Attacks

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• Exploit unintentional information leakage by side-effects

Power

consumption

Execution

time
CPU caches

17 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Side-channel Attacks

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• Exploit unintentional information leakage by side-effects

Power

consumption

Execution

time
CPU caches

17 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Side-channel Attacks

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• Exploit unintentional information leakage by side-effects

Power

consumption

Execution

time
CPU caches

17 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Side-channel Attacks

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• Exploit unintentional information leakage by side-effects

Power

consumption

Execution

time
CPU caches

17 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Caches and Cache Attacks

CPU Cache

18 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

CPU Cache

18 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

CPU Cache

18 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

CPU Cache

18 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

CPU Cache

18 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

CPU Cache

18 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

CPU Cache

18 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

CPU Cache

18 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Memory Access Latency

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

1

2

3

·104

Measured access time (CPU cycles)

N
u
m
b
e
r
o
f
a
cc
e
ss
e
s Cache hit

Cache miss

19 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Microarchitecture

Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, …)

• Serves as the interface between hardware and software

• Microarchitecture is an actual implementation of the ISA

21 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, …)

• Serves as the interface between hardware and software

• Microarchitecture is an actual implementation of the ISA

21 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, …)

• Serves as the interface between hardware and software

• Microarchitecture is an actual implementation of the ISA

21 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, …)

• Serves as the interface between hardware and software

• Microarchitecture is an actual implementation of the ISA

21 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

In-Order Execution

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Instructions are...

• fetched (IF) from the L1 Instruction Cache

• decoded (ID)
• executed (EX) by execution units

• Memory access is performed (MEM)
• Architectural register file is updated (WB)

22 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

In-Order Execution

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Instructions are...

• fetched (IF) from the L1 Instruction Cache

• decoded (ID)

• executed (EX) by execution units

• Memory access is performed (MEM)
• Architectural register file is updated (WB)

22 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

In-Order Execution

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Instructions are...

• fetched (IF) from the L1 Instruction Cache

• decoded (ID)
• executed (EX) by execution units

• Memory access is performed (MEM)
• Architectural register file is updated (WB)

22 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

In-Order Execution

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Instructions are...

• fetched (IF) from the L1 Instruction Cache

• decoded (ID)
• executed (EX) by execution units

• Memory access is performed (MEM)

• Architectural register file is updated (WB)

22 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

In-Order Execution

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Instructions are...

• fetched (IF) from the L1 Instruction Cache

• decoded (ID)
• executed (EX) by execution units

• Memory access is performed (MEM)
• Architectural register file is updated (WB)

22 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

In-Order Execution

• Instructions are executed in-order

• Pipeline stalls when stages are not ready

• If data is not cached, we need to wait

23 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

In-Order Execution

• Instructions are executed in-order

• Pipeline stalls when stages are not ready

• If data is not cached, we need to wait

23 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

In-Order Execution

• Instructions are executed in-order

• Pipeline stalls when stages are not ready

• If data is not cached, we need to wait

23 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Out-of-order Execution

int width = 10, height = 5;

float diagonal = sqrt(width * width
+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width, height, area);

24 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Out-of-order Execution

int width = 10, height = 5;

float diagonal = sqrt(width * width
+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width, height, area);

24 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

25 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

25 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units

25 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

26 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

26 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

26 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

26 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

26 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

26 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Out-of-Order Execution
E

xe
cu

tio
n

E
ng

in
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state

26 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

The state does not become architecturally visible but …

The state does not become architecturally visible but …

Building the Code

• New code

(volatile char) 0;
array[84 * 4096] = 0;

• volatile because compiler was not happy

warning : statement with no e f f e c t [−Wunused−value]

* (char *) 0 ;

• Static code analyzer is still not happy

warning : Dereference of nu l l pointer

* (vo l a t i l e char *) 0 ;

27 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• New code

(volatile char) 0;
array[84 * 4096] = 0;

• volatile because compiler was not happy

warning : statement with no e f f e c t [−Wunused−value]

* (char *) 0 ;

• Static code analyzer is still not happy

warning : Dereference of nu l l pointer

* (vo l a t i l e char *) 0 ;

27 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• New code

(volatile char) 0;
array[84 * 4096] = 0;

• volatile because compiler was not happy

warning : statement with no e f f e c t [−Wunused−value]

* (char *) 0 ;

• Static code analyzer is still not happy

warning : Dereference of nu l l pointer

* (vo l a t i l e char *) 0 ;

27 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
e
ss

ti
m
e

[c
y
cl
e
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

28 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
e
ss

ti
m
e

[c
y
cl
e
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

28 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
e
ss

ti
m
e

[c
y
cl
e
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

28 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient

instructions

29 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient

instructions

29 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient

instructions

29 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient

instructions

29 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

30 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

30 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;
array[data * 4096] = 0;

• Then check whether any part of array is cached

31 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;
array[data * 4096] = 0;

• Then check whether any part of array is cached

31 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
e
ss

ti
m
e

[c
y
cl
e
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

32 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
e
ss

ti
m
e

[c
y
cl
e
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

32 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown

• Using out-of-order execution, we can read data at any address

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

• Entire physical memory is typically accessible through kernel

space

33 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown

• Using out-of-order execution, we can read data at any address

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

• Entire physical memory is typically accessible through kernel

space

33 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown

• Using out-of-order execution, we can read data at any address

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

• Entire physical memory is typically accessible through kernel

space

33 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown

• Using out-of-order execution, we can read data at any address

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

• Entire physical memory is typically accessible through kernel

space

33 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Demo

Details: Exception Handling

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

34 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Details: Exception Handling

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

34 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Details: Exception Handling

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

34 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown with Fault Suppression

• Intel TSX to suppress exceptions instead of signal handler

if(xbegin() == XBEGIN_STARTED) {
char secret = *(char*) 0xffffffff81a000e0;
array[secret * 4096] = 0;
xend();

}

for (size_t i = 0; i < 256; i++) {
if (flush_and_reload(array + i * 4096) == CACHE_HIT) {
printf("%c\n", i);

}
}

35 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown with Fault Prevention

• Speculative execution to prevent exceptions

int speculate = rand() % 2;
size_t address = (0xffffffff81a000e0 * speculate) +

((size_t)&zero * (1 - speculate));
if(!speculate) {
char secret = *(char*) address;
array[secret * 4096] = 0;

}

for (size_t i = 0; i < 256; i++) {
if (flush_and_reload(array + i * 4096) == CACHE_HIT) {
printf("%c\n", i);

}
}

36 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Make it faster

• Improve the performance with a NULL pointer dereference

if(xbegin() == XBEGIN_STARTED) {
(volatile char) 0;
char secret = *(char*) 0xffffffff81a000e0;
array[secret * 4096] = 0;
xend();

}

37 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Make it faster

• Improve the performance with a NULL pointer dereference

if(xbegin() == XBEGIN_STARTED) {
(volatile char) 0;
char secret = *(char*) 0xffffffff81a000e0;
array[secret * 4096] = 0;
xend();

}

37 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Uncached memory

• Assumed that one can only read data stored in the L1 with

Meltdown

• Experiment where a thread flushes the value constantly

and a thread on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate

• Meltdown might implicitly cache the data

38 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Uncached memory

• Assumed that one can only read data stored in the L1 with

Meltdown

• Experiment where a thread flushes the value constantly

and a thread on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate

• Meltdown might implicitly cache the data

38 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Uncached memory

• Assumed that one can only read data stored in the L1 with

Meltdown

• Experiment where a thread flushes the value constantly

and a thread on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate

• Meltdown might implicitly cache the data

38 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Uncached memory

• Assumed that one can only read data stored in the L1 with

Meltdown

• Experiment where a thread flushes the value constantly

and a thread on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate

• Meltdown might implicitly cache the data

38 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Uncached memory

• Assumed that one can only read data stored in the L1 with

Meltdown

• Experiment where a thread flushes the value constantly

and a thread on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate

• Meltdown might implicitly cache the data

38 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Uncachable memory

• Mark pages in page tables as UC (uncachable)

• Every read or write operation will go to main memory

• If the attacker can trigger a legitimate load (system call, …)

on the same CPU core, the data still can be leaked

• Meltdown might read the data from one of the fill buffers

• as they are shared between threads running on the same

core

39 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Uncachable memory

• Mark pages in page tables as UC (uncachable)

• Every read or write operation will go to main memory

• If the attacker can trigger a legitimate load (system call, …)

on the same CPU core, the data still can be leaked

• Meltdown might read the data from one of the fill buffers

• as they are shared between threads running on the same

core

39 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Uncachable memory

• Mark pages in page tables as UC (uncachable)

• Every read or write operation will go to main memory

• If the attacker can trigger a legitimate load (system call, …)

on the same CPU core, the data still can be leaked

• Meltdown might read the data from one of the fill buffers

• as they are shared between threads running on the same

core

39 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Uncachable memory

• Mark pages in page tables as UC (uncachable)

• Every read or write operation will go to main memory

• If the attacker can trigger a legitimate load (system call, …)

on the same CPU core, the data still can be leaked

• Meltdown might read the data from one of the fill buffers

• as they are shared between threads running on the same

core

39 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Uncachable memory

• Mark pages in page tables as UC (uncachable)

• Every read or write operation will go to main memory

• If the attacker can trigger a legitimate load (system call, …)

on the same CPU core, the data still can be leaked

• Meltdown might read the data from one of the fill buffers

• as they are shared between threads running on the same

core

39 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

So you can dump the entire memory.

But it takes ages?

So you can dump the entire memory. But it takes ages?

Practical attacks

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?

40 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Practical attacks

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?

40 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Practical attacks

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?

40 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

VeraCrypt

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

41 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

VeraCrypt

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

41 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

VeraCrypt

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

41 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

VeraCrypt

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

41 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Demo

Breaking KASLR

• De-randomize KASLR to access internal kernel structures

• Locate a known value inside the kernel, e.g., Linux banner

• Start at the default address according to the symbol table

of the running kernel

• Linux KASLR has an entropy of 6 bits ⇒ only 64 possible

randomization offsets

• Difference between the found address and the

non-randomized base address is the randomization offset

42 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Breaking KASLR

• De-randomize KASLR to access internal kernel structures

• Locate a known value inside the kernel, e.g., Linux banner

• Start at the default address according to the symbol table

of the running kernel

• Linux KASLR has an entropy of 6 bits ⇒ only 64 possible

randomization offsets

• Difference between the found address and the

non-randomized base address is the randomization offset

42 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Breaking KASLR

• De-randomize KASLR to access internal kernel structures

• Locate a known value inside the kernel, e.g., Linux banner

• Start at the default address according to the symbol table

of the running kernel

• Linux KASLR has an entropy of 6 bits ⇒ only 64 possible

randomization offsets

• Difference between the found address and the

non-randomized base address is the randomization offset

42 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Breaking KASLR

• De-randomize KASLR to access internal kernel structures

• Locate a known value inside the kernel, e.g., Linux banner

• Start at the default address according to the symbol table

of the running kernel

• Linux KASLR has an entropy of 6 bits ⇒ only 64 possible

randomization offsets

• Difference between the found address and the

non-randomized base address is the randomization offset

42 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Breaking KASLR

• De-randomize KASLR to access internal kernel structures

• Locate a known value inside the kernel, e.g., Linux banner

• Start at the default address according to the symbol table

of the running kernel

• Linux KASLR has an entropy of 6 bits ⇒ only 64 possible

randomization offsets

• Difference between the found address and the

non-randomized base address is the randomization offset

42 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Locating the victim process

• Linux manages all processes in a linked list

• Head of the list is stored at init_task structure

• At a fixed offset that varies only among kernel builds

• Each task list structure contains a pointer to the next task

and

• PID of the task

• name of the task

• Root of the multi-level page table

43 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Locating the victim process

• Linux manages all processes in a linked list

• Head of the list is stored at init_task structure

• At a fixed offset that varies only among kernel builds

• Each task list structure contains a pointer to the next task

and

• PID of the task

• name of the task

• Root of the multi-level page table

43 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Locating the victim process

• Linux manages all processes in a linked list

• Head of the list is stored at init_task structure

• At a fixed offset that varies only among kernel builds

• Each task list structure contains a pointer to the next task

and

• PID of the task

• name of the task

• Root of the multi-level page table

43 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Locating the victim process

• Linux manages all processes in a linked list

• Head of the list is stored at init_task structure

• At a fixed offset that varies only among kernel builds

• Each task list structure contains a pointer to the next task

and

• PID of the task

• name of the task

• Root of the multi-level page table

43 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Dumping memory content

• Resolve physical address using paging structures

• Read the content using the direct-physical map

• Enumerate all mapped pages and dump entire process

memory

• Location of the key known, we can just dump the key

directly

44 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Dumping memory content

• Resolve physical address using paging structures

• Read the content using the direct-physical map

• Enumerate all mapped pages and dump entire process

memory

• Location of the key known, we can just dump the key

directly

44 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Dumping memory content

• Resolve physical address using paging structures

• Read the content using the direct-physical map

• Enumerate all mapped pages and dump entire process

memory

• Location of the key known, we can just dump the key

directly

44 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Dumping memory content

• Resolve physical address using paging structures

• Read the content using the direct-physical map

• Enumerate all mapped pages and dump entire process

memory

• Location of the key known, we can just dump the key

directly

44 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Final steps

• aeskeyfind to extract AES keys from the memory dump

• pytruecrypt to decrypt disk image using the extracted

key

• Affects every application that stores its secret in DRAM

45 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Final steps

• aeskeyfind to extract AES keys from the memory dump

• pytruecrypt to decrypt disk image using the extracted

key

• Affects every application that stores its secret in DRAM

45 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Final steps

• aeskeyfind to extract AES keys from the memory dump

• pytruecrypt to decrypt disk image using the extracted

key

• Affects every application that stores its secret in DRAM

45 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Who is affected?

Affected by Meltdown

• Intel: Almost every CPU

• AMD: Seems not to be affected

• ARM: Only the Cortex-A75

• IBM: System Z, Power Architecture, POWER8 and POWER9

• Apple: All Mac and iOS devices

46 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Affected by Meltdown

• Intel: Almost every CPU

• AMD: Seems not to be affected

• ARM: Only the Cortex-A75

• IBM: System Z, Power Architecture, POWER8 and POWER9

• Apple: All Mac and iOS devices

46 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Affected by Meltdown

• Intel: Almost every CPU

• AMD: Seems not to be affected

• ARM: Only the Cortex-A75

• IBM: System Z, Power Architecture, POWER8 and POWER9

• Apple: All Mac and iOS devices

46 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Affected by Meltdown

• Intel: Almost every CPU

• AMD: Seems not to be affected

• ARM: Only the Cortex-A75

• IBM: System Z, Power Architecture, POWER8 and POWER9

• Apple: All Mac and iOS devices

46 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Affected by Meltdown

• Intel: Almost every CPU

• AMD: Seems not to be affected

• ARM: Only the Cortex-A75

• IBM: System Z, Power Architecture, POWER8 and POWER9

• Apple: All Mac and iOS devices

46 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Affected by Meltdown

• But there are other CPU manufacturers as well …

47 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Samsung Galaxy S7

Samsung Galaxy S7

• Exynos Mongoose M1 CPU Architecture

• Custom CPU core in the Exynos 8 Octa (8890)

• Perceptron Branch Prediction

• Full Out-of-Order Instruction Execution

• Full Out-of-Order loads and stores

48 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Samsung Galaxy S7

Samsung Galaxy S7

• Exynos Mongoose M1 CPU Architecture

• Custom CPU core in the Exynos 8 Octa (8890)

• Perceptron Branch Prediction

• Full Out-of-Order Instruction Execution

• Full Out-of-Order loads and stores

48 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Samsung Galaxy S7

Samsung Galaxy S7

• Exynos Mongoose M1 CPU Architecture

• Custom CPU core in the Exynos 8 Octa (8890)

• Perceptron Branch Prediction

• Full Out-of-Order Instruction Execution

• Full Out-of-Order loads and stores

48 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Samsung Galaxy S7

Samsung Galaxy S7

• Exynos Mongoose M1 CPU Architecture

• Custom CPU core in the Exynos 8 Octa (8890)

• Perceptron Branch Prediction

• Full Out-of-Order Instruction Execution

• Full Out-of-Order loads and stores

48 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Samsung Galaxy S7

Samsung Galaxy S7

• Exynos Mongoose M1 CPU Architecture

• Custom CPU core in the Exynos 8 Octa (8890)

• Perceptron Branch Prediction

• Full Out-of-Order Instruction Execution

• Full Out-of-Order loads and stores

48 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Demo

Samsung Galaxy S7

Samsung Galaxy S7

• Luckily they already fixed it

• With their latest update on July 10, 2018

49 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Samsung Galaxy S7

Samsung Galaxy S7

• Luckily they already fixed it

• With their latest update

on July 10, 2018

49 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Samsung Galaxy S7

Samsung Galaxy S7

• Luckily they already fixed it

• With their latest update on July 10, 2018

49 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Affected by Meltdown

• But there are other CPU manufacturers as well …

• …which are affected

• Need to evaluate the attack on other CPUs as well

• Notify the users …

• …and custom ROM developers, e.g., LineageOS

50 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

But wait, what about privileged registers?

Variant 3a

• ARM found a closely related Meltdown variant

• Read of system registers that are not accessible from

current exception level

• ARM Cortex-A15, Cortex-A57 and Cortex-A72 are vulnerable

• Impact: breaking KASLR and pointer authentication

51 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Variant 3a

• ARM found a closely related Meltdown variant

• Read of system registers that are not accessible from

current exception level

• ARM Cortex-A15, Cortex-A57 and Cortex-A72 are vulnerable

• Impact: breaking KASLR and pointer authentication

51 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Variant 3a

• ARM found a closely related Meltdown variant

• Read of system registers that are not accessible from

current exception level

• ARM Cortex-A15, Cortex-A57 and Cortex-A72 are vulnerable

• Impact: breaking KASLR and pointer authentication

51 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Variant 3a

• ARM found a closely related Meltdown variant

• Read of system registers that are not accessible from

current exception level

• ARM Cortex-A15, Cortex-A57 and Cortex-A72 are vulnerable

• Impact: breaking KASLR and pointer authentication

51 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Demo

Variant 3a

• Intel is affected too (May 21, 2018)

• Almost every CPU (Core i3/i5/i7, 2nd-8th Intel Core, Xeon,

Atom, Pentium, …)

• Rogue System Register Read (RSRE) (CVE-2018-3640)

52 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Variant 3a

• Intel is affected too (May 21, 2018)

• Almost every CPU (Core i3/i5/i7, 2nd-8th Intel Core, Xeon,

Atom, Pentium, …)

• Rogue System Register Read (RSRE) (CVE-2018-3640)

52 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Variant 3a

• Intel is affected too (May 21, 2018)

• Almost every CPU (Core i3/i5/i7, 2nd-8th Intel Core, Xeon,

Atom, Pentium, …)

• Rogue System Register Read (RSRE) (CVE-2018-3640)

52 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown (or Spectre) a side-channel attack?

No.

• We read the data directly

• We use a side channel internally for transmission

→ does not make the entire thing a side-channel attack

53 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown (or Spectre) a side-channel attack?

No.

• We read the data directly

• We use a side channel internally for transmission

→ does not make the entire thing a side-channel attack

53 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown (or Spectre) a side-channel attack?

No.

• We read the data directly

• We use a side channel internally for transmission

→ does not make the entire thing a side-channel attack

53 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown (or Spectre) a side-channel attack?

No.

• We read the data directly

• We use a side channel internally for transmission

→ does not make the entire thing a side-channel attack

53 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown (or Spectre) a side-channel attack?

No.

• We read the data directly

• We use a side channel internally for transmission

→ does not make the entire thing a side-channel attack

53 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown (or Spectre) a side-channel attack?

No.

• We read the data directly

• We use a side channel internally for transmission

→ does not make the entire thing a side-channel attack

53 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown a variant of Spectre? Is it speculative execution?

No.

• Often heard: “Meltdown is speculating beyond faulting

instructions”

→ That’s not speculative execution

• “Speculating beyond faulting instructions” - not even the

actual problem

• AMD does that - but is not affected!

→ Actual problem: fetching & using real values for

instructions after faulting ones

54 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown a variant of Spectre? Is it speculative execution?

No.

• Often heard: “Meltdown is speculating beyond faulting

instructions”

→ That’s not speculative execution

• “Speculating beyond faulting instructions” - not even the

actual problem

• AMD does that - but is not affected!

→ Actual problem: fetching & using real values for

instructions after faulting ones

54 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown a variant of Spectre? Is it speculative execution?

No.

• Often heard: “Meltdown is speculating beyond faulting

instructions”

→ That’s not speculative execution

• “Speculating beyond faulting instructions” - not even the

actual problem

• AMD does that - but is not affected!

→ Actual problem: fetching & using real values for

instructions after faulting ones

54 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown a variant of Spectre? Is it speculative execution?

No.

• Often heard: “Meltdown is speculating beyond faulting

instructions”

→ That’s not speculative execution

• “Speculating beyond faulting instructions” - not even the

actual problem

• AMD does that - but is not affected!

→ Actual problem: fetching & using real values for

instructions after faulting ones

54 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown a variant of Spectre? Is it speculative execution?

No.

• Often heard: “Meltdown is speculating beyond faulting

instructions”

→ That’s not speculative execution

• “Speculating beyond faulting instructions” - not even the

actual problem

• AMD does that - but is not affected!

→ Actual problem: fetching & using real values for

instructions after faulting ones

54 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown a variant of Spectre? Is it speculative execution?

No.

• Often heard: “Meltdown is speculating beyond faulting

instructions”

→ That’s not speculative execution

• “Speculating beyond faulting instructions” - not even the

actual problem

• AMD does that - but is not affected!

→ Actual problem: fetching & using real values for

instructions after faulting ones

54 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown a variant of Spectre? Is it speculative execution?

No.

• Often heard: “Meltdown is speculating beyond faulting

instructions”

→ That’s not speculative execution

• “Speculating beyond faulting instructions” - not even the

actual problem

• AMD does that - but is not affected!

→ Actual problem: fetching & using real values for

instructions after faulting ones

54 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Is Meltdown a variant of Spectre? Is it speculative execution?

No.

• Often heard: “Meltdown is speculating beyond faulting

instructions”

→ That’s not speculative execution

• “Speculating beyond faulting instructions” - not even the

actual problem

• AMD does that - but is not affected!

→ Actual problem: fetching & using real values for

instructions after faulting ones

54 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

How can this all be fixed?

Meltdown Mitigation

• Problem is rooted in hardware

• Race condition between the memory fetch and

corresponding permission check

• Serialize both of them

• Hard split of user space and kernel space

• New bit in control register

• Fix the hardware → long-term solution

• Can we fix it in software?

55 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown Mitigation

• Problem is rooted in hardware

• Race condition between the memory fetch and

corresponding permission check

• Serialize both of them

• Hard split of user space and kernel space

• New bit in control register

• Fix the hardware → long-term solution

• Can we fix it in software?

55 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown Mitigation

• Problem is rooted in hardware

• Race condition between the memory fetch and

corresponding permission check

• Serialize both of them

• Hard split of user space and kernel space

• New bit in control register

• Fix the hardware → long-term solution

• Can we fix it in software?

55 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown Mitigation

• Problem is rooted in hardware

• Race condition between the memory fetch and

corresponding permission check

• Serialize both of them

• Hard split of user space and kernel space

• New bit in control register

• Fix the hardware → long-term solution

• Can we fix it in software?

55 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown Mitigation

• Problem is rooted in hardware

• Race condition between the memory fetch and

corresponding permission check

• Serialize both of them

• Hard split of user space and kernel space

• New bit in control register

• Fix the hardware → long-term solution

• Can we fix it in software?

55 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown Mitigation

• Kernel addresses in user space are a

problem

• Why don’t we take the kernel

addresses...

56 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown Mitigation

• Kernel addresses in user space are a

problem

• Why don’t we take the kernel

addresses...

56 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown Mitigation

• ...and remove them if not needed?

• User accessible check in hardware is

not reliable

57 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown Mitigation

• ...and remove them if not needed?

• User accessible check in hardware is

not reliable

57 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown Mitigation

• Unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all

58 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown Mitigation

• Unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all

58 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Meltdown Mitigation

• Unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all

58 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

Userspace Kernelspace

Applications
Operating
System Memory

59 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

Userspace Kernelspace

Applications
Operating
System Memory

Userspace Kernelspace

Applications

Kernel View User View

context switch

60 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

• We published KAISER in May 2017 …

• …as a countermeasure against other side-channel attacks

• Inadvertently defeats Meltdown as well

• PoC implementation for the Linux kernel

61 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

• We published KAISER in May 2017 …

• …as a countermeasure against other side-channel attacks

• Inadvertently defeats Meltdown as well

• PoC implementation for the Linux kernel

61 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

• We published KAISER in May 2017 …

• …as a countermeasure against other side-channel attacks

• Inadvertently defeats Meltdown as well

• PoC implementation for the Linux kernel

61 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

• We published KAISER in May 2017 …

• …as a countermeasure against other side-channel attacks

• Inadvertently defeats Meltdown as well

• PoC implementation for the Linux kernel

61 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

• Hardware interrupt while running in user mode

• Kernel needs to deal with interrupt but does not exist

anymore in address space

• Traps, NMI, system calls, …

• Must map some kernel code in user space

62 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

• Need to update CR3 in order to switch to other address space

• How can we do this efficiently?

• Instead of one PGD, two PGDs are allocated

• 8k in size and 8k aligned

• Trick: Just flip bit 12 in the pointer to swap between both halves

CR3 Pair

CR3 + 0x1000

CR3

User

Kernel

PGD User

PGD Kernel

C
R
3
[1
2
]
=
1

C
R
3
[1
2
]
=
0

63 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

• Need to update CR3 in order to switch to other address space

• How can we do this efficiently?

• Instead of one PGD, two PGDs are allocated

• 8k in size and 8k aligned

• Trick: Just flip bit 12 in the pointer to swap between both halves

CR3 Pair

CR3 + 0x1000

CR3

User

Kernel

PGD User

PGD Kernel

C
R
3
[1
2
]
=
1

C
R
3
[1
2
]
=
0

63 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

• Need to update CR3 in order to switch to other address space

• How can we do this efficiently?

• Instead of one PGD, two PGDs are allocated

• 8k in size and 8k aligned

• Trick: Just flip bit 12 in the pointer to swap between both halves

CR3 Pair

CR3 + 0x1000

CR3

User

Kernel

PGD User

PGD Kernel

C
R
3
[1
2
]
=
1

C
R
3
[1
2
]
=
0

63 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

• Need to update CR3 in order to switch to other address space

• How can we do this efficiently?

• Instead of one PGD, two PGDs are allocated

• 8k in size and 8k aligned

• Trick: Just flip bit 12 in the pointer to swap between both halves

CR3 Pair

CR3 + 0x1000

CR3

User

Kernel

PGD User

PGD Kernel

C
R
3
[1
2
]
=
1

C
R
3
[1
2
]
=
0

63 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

• Need to update CR3 in order to switch to other address space

• How can we do this efficiently?

• Instead of one PGD, two PGDs are allocated

• 8k in size and 8k aligned

• Trick: Just flip bit 12 in the pointer to swap between both halves

CR3 Pair

CR3 + 0x1000

CR3

PGD User

PGD Kernel

User

Kernel

C
R
3
[1
2
]
=
1

C
R
3
[1
2
]
=
0

63 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KAISER

• Need to update CR3 in order to switch to other address space

• How can we do this efficiently?

• Instead of one PGD, two PGDs are allocated

• 8k in size and 8k aligned

• Trick: Just flip bit 12 in the pointer to swap between both halves

CR3 Pair

CR3 + 0x1000

CR3

PGD User

PGD Kernel

User

Kernel

C
R
3
[1
2
]
=
1

C
R
3
[1
2
]
=
0

63 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Kernel Page-table Isolation

• Intel and others improved KAISER

• Merged it into upstream as KPTI (Kernel Page-table

Isolation)

• Kernel patches are available for arm64 as well

64 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Kernel Page-table Isolation

• Intel and others improved KAISER

• Merged it into upstream as KPTI (Kernel Page-table

Isolation)

• Kernel patches are available for arm64 as well

64 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Kernel Page-table Isolation

• Intel and others improved KAISER

• Merged it into upstream as KPTI (Kernel Page-table

Isolation)

• Kernel patches are available for arm64 as well

64 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Apple

• Apple released updates in iOS 11.2, macOS 10.13.2 and tvOS

11.2 to mitigate Meltdown

• Boot option: -no-shared-cr3
• Unmaps the user space while running in kernel mode

• But not vice versa

65 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

KVA Shadow

• Kernel Virtual Address (KVA) Shadow

• Meltdown Mitigation for Microsoft Windows

66 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Implementing

• Introducing such a fundamental change to the operating

system is extremely challenging

• Our PoC implementation contained many bugs as well

67 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Total Meltdown

• Discovered by Ulf Frisk (@ulffrisk) in the 2018-02 security

update

• CVE-2018-1038

• Modified the PML4 entry of 0x1ed to allow to access page

from user-mode

• On Windows 7 and Server 2018 R2: Self-Referencing Entry

• Allows to read and modify entire physical memory

68 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

What now?

Future

• More attacks exploiting performance optimizations in

hardware

• New variants are disclosed frequently

69 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

A unique chance

A unique chance to

• rethink processor design

• grow up, like other fields (car industry, construction

industry)

70 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

Proof-of-Concept

You can find our proof-of-concept implementation on:

• https://github.com/IAIK/meltdown

71 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

https://github.com/IAIK/meltdown

Conclusion

• Underestimated microarchitectural attacks for a long time

• Meltdown exploit performance optimizations

• Allow to leak arbitrary memory

• Countermeasures come with a performance impact

• Find trade-offs between security and performance

72 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

References

R. Grisenthwaite. Cache Speculation Side-channels. 2018.

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard. KASLR is

Dead: Long Live KASLR. In: ESSoS. 2017.

Intel. Intel Analysis of Speculative Execution Side Channels. Jan. 2018. url:

https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/01/Intel-Analysis-of-
Speculative-Execution-Side-Channels.pdf.

K. Johnson. KVA Shadow: Mitigating Meltdown on Windows. Mar. 2018. url:

https://blogs.technet.microsoft.com/srd/2018/03/23/kva-
shadow-mitigating-meltdown-on-windows/.

73 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,

P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown: Reading Kernel

Memory from User Space. In: USENIX Security Symposium. 2018.

LWN. The current state of kernel page-table isolation. 2017. url:

https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/.

Y. Yarom and K. Falkner. Flush+Reload: a High Resolution, Low Noise, L3 Cache

Side-Channel Attack. In: USENIX Security Symposium. 2014.

74 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology

https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/

	References

