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Let’s Read Kernel Memory from User Space!



Virtual Memory

Kernel Addresses

Non-canonical Addresses

User Addresses

Virtual Address Space

5 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Building the Code

• Find something human readable, e.g., the Linux version

# sudo grep linux_banner /proc/kallsyms
ffffffff81a000e0 R linux_banner
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Building the Code

char data = *(char*) 0xffffffff81a000e0;
printf("%c\n", data);
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Building the Code

• Compile and run

segfault at ffffffff81a000e0 ip 0000000000400535
sp 00007ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation

fault
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Building the Code

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value
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Building the Code

• Still no kernel memory

• Privilege checks seem to work

• Maybe it is not that straight forward

• Back to the drawing board
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Operating Systems 101



Memory Isolation

Userspace Kernelspace

Applications
Operating
System Memory

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel
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Paging

• CPU support virtual address spaces to isolate

processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames

using page tables
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Address Translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···
#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···
#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

13 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Address Translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···
#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···
#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

13 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Page Table Entry

P RW US WT UC R D S G Ignored

Physical Page Number

Ignored X

• User/Supervisor bit defines in which privilege level the page can be

accessed
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Direct-physical map

Physical memory

0 max

User

0 247

Kernel

−247 −1

• Kernel is typically mapped into every address space

• Entire physical memory is mapped in the kernel
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Loading an address
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Loading an address
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Side-channel Attacks



Side-channel Attacks

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• Exploit unintentional information leakage by side-effects

Power

consumption

Execution

time
CPU caches

17 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Side-channel Attacks

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• Exploit unintentional information leakage by side-effects

Power

consumption

Execution

time
CPU caches

17 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Side-channel Attacks

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• Exploit unintentional information leakage by side-effects

Power

consumption

Execution

time
CPU caches

17 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Side-channel Attacks

• Safe software infrastructure does not mean safe execution

• Information leaks because of the underlying hardware

• Exploit unintentional information leakage by side-effects

Power

consumption

Execution

time
CPU caches

17 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Caches and Cache Attacks



CPU Cache
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CPU Cache
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CPU Cache
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CPU Cache
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CPU Cache
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Memory Access Latency

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

1
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·104

Measured access time (CPU cycles)

N
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cc
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ss
e
s Cache hit

Cache miss
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Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Flush+Reload

20 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Flush+Reload
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Microarchitecture



Architecture and Microarchitecture

• Instruction Set Architecture (ISA) is an abstract model of a

computer (x86, ARMv8, SPARC, …)

• Serves as the interface between hardware and software

• Microarchitecture is an actual implementation of the ISA
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In-Order Execution

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Instructions are...

• fetched (IF) from the L1 Instruction Cache

• decoded (ID)
• executed (EX) by execution units

• Memory access is performed (MEM)
• Architectural register file is updated (WB)
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In-Order Execution

• Instructions are executed in-order

• Pipeline stalls when stages are not ready

• If data is not cached, we need to wait
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Out-of-order Execution

int width = 10, height = 5;

float diagonal = sqrt(width * width
+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width, height, area);
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Out-of-Order Execution
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Instructions are

• fetched and decoded in the front-end

• dispatched to the backend

• processed by individual execution units
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Instructions

• are executed out-of-order

• wait until their dependencies are ready

• Later instructions might execute prior earlier

instructions

• retire in-order

• State becomes architecturally visible

• Exceptions are checked during retirement

• Flush pipeline and recover state
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Building the Code

• New code

*(volatile char*) 0;
array[84 * 4096] = 0;

• volatile because compiler was not happy

warning : statement with no e f f e c t [−Wunused−value ]

* ( char * ) 0 ;

• Static code analyzer is still not happy

warning : Dereference of nu l l pointer

* ( vo l a t i l e char * ) 0 ;
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Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
e
ss

ti
m
e

[c
y
cl
e
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards
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Building the Code

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient

instructions
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Building the Code
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Building the Code

• Add another layer of indirection to test

char data = *(char*) 0xffffffff81a000e0;
array[data * 4096] = 0;

• Then check whether any part of array is cached
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Building the Code

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page
A
cc
e
ss

ti
m
e

[c
y
cl
e
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough
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Meltdown

• Using out-of-order execution, we can read data at any address

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

• Entire physical memory is typically accessible through kernel

space
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Demo



Details: Exception Handling

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention
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Meltdown with Fault Suppression

• Intel TSX to suppress exceptions instead of signal handler

if(xbegin() == XBEGIN_STARTED) {
char secret = *(char*) 0xffffffff81a000e0;
array[secret * 4096] = 0;
xend();

}

for (size_t i = 0; i < 256; i++) {
if (flush_and_reload(array + i * 4096) == CACHE_HIT) {
printf("%c\n", i);

}
}
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Meltdown with Fault Prevention

• Speculative execution to prevent exceptions

int speculate = rand() % 2;
size_t address = (0xffffffff81a000e0 * speculate) +

((size_t)&zero * (1 - speculate));
if(!speculate) {
char secret = *(char*) address;
array[secret * 4096] = 0;

}

for (size_t i = 0; i < 256; i++) {
if (flush_and_reload(array + i * 4096) == CACHE_HIT) {
printf("%c\n", i);

}
}

36 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Make it faster

• Improve the performance with a NULL pointer dereference

if(xbegin() == XBEGIN_STARTED) {
*(volatile char*) 0;
char secret = *(char*) 0xffffffff81a000e0;
array[secret * 4096] = 0;
xend();

}
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Uncached memory

• Assumed that one can only read data stored in the L1 with

Meltdown

• Experiment where a thread flushes the value constantly

and a thread on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate

• Meltdown might implicitly cache the data
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Uncachable memory

• Mark pages in page tables as UC (uncachable)

• Every read or write operation will go to main memory

• If the attacker can trigger a legitimate load (system call, …)

on the same CPU core, the data still can be leaked

• Meltdown might read the data from one of the fill buffers

• as they are shared between threads running on the same

core
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So you can dump the entire memory.

But it takes ages?
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Practical attacks

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?
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VeraCrypt

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM
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Demo



Breaking KASLR

• De-randomize KASLR to access internal kernel structures

• Locate a known value inside the kernel, e.g., Linux banner

• Start at the default address according to the symbol table

of the running kernel

• Linux KASLR has an entropy of 6 bits ⇒ only 64 possible

randomization offsets

• Difference between the found address and the

non-randomized base address is the randomization offset
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Locating the victim process

• Linux manages all processes in a linked list

• Head of the list is stored at init_task structure

• At a fixed offset that varies only among kernel builds

• Each task list structure contains a pointer to the next task

and

• PID of the task

• name of the task

• Root of the multi-level page table
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Dumping memory content

• Resolve physical address using paging structures

• Read the content using the direct-physical map

• Enumerate all mapped pages and dump entire process

memory

• Location of the key known, we can just dump the key

directly
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Final steps

• aeskeyfind to extract AES keys from the memory dump

• pytruecrypt to decrypt disk image using the extracted

key

• Affects every application that stores its secret in DRAM
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Who is affected?



Affected by Meltdown

• Intel: Almost every CPU

• AMD: Seems not to be affected

• ARM: Only the Cortex-A75

• IBM: System Z, Power Architecture, POWER8 and POWER9

• Apple: All Mac and iOS devices
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Affected by Meltdown

• But there are other CPU manufacturers as well …
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Samsung Galaxy S7

Samsung Galaxy S7

• Exynos Mongoose M1 CPU Architecture

• Custom CPU core in the Exynos 8 Octa (8890)

• Perceptron Branch Prediction

• Full Out-of-Order Instruction Execution

• Full Out-of-Order loads and stores

48 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Samsung Galaxy S7

Samsung Galaxy S7

• Exynos Mongoose M1 CPU Architecture

• Custom CPU core in the Exynos 8 Octa (8890)

• Perceptron Branch Prediction

• Full Out-of-Order Instruction Execution

• Full Out-of-Order loads and stores

48 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Samsung Galaxy S7

Samsung Galaxy S7

• Exynos Mongoose M1 CPU Architecture

• Custom CPU core in the Exynos 8 Octa (8890)

• Perceptron Branch Prediction

• Full Out-of-Order Instruction Execution

• Full Out-of-Order loads and stores

48 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Samsung Galaxy S7

Samsung Galaxy S7

• Exynos Mongoose M1 CPU Architecture

• Custom CPU core in the Exynos 8 Octa (8890)

• Perceptron Branch Prediction

• Full Out-of-Order Instruction Execution

• Full Out-of-Order loads and stores

48 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Samsung Galaxy S7

Samsung Galaxy S7

• Exynos Mongoose M1 CPU Architecture

• Custom CPU core in the Exynos 8 Octa (8890)

• Perceptron Branch Prediction

• Full Out-of-Order Instruction Execution

• Full Out-of-Order loads and stores

48 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



Demo



Samsung Galaxy S7

Samsung Galaxy S7

• Luckily they already fixed it

• With their latest update on July 10, 2018
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Affected by Meltdown

• But there are other CPU manufacturers as well …

• …which are affected

• Need to evaluate the attack on other CPUs as well

• Notify the users …

• …and custom ROM developers, e.g., LineageOS
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But wait, what about privileged registers?



Variant 3a

• ARM found a closely related Meltdown variant

• Read of system registers that are not accessible from

current exception level

• ARM Cortex-A15, Cortex-A57 and Cortex-A72 are vulnerable

• Impact: breaking KASLR and pointer authentication
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Demo



Variant 3a

• Intel is affected too (May 21, 2018)

• Almost every CPU (Core i3/i5/i7, 2nd-8th Intel Core, Xeon,

Atom, Pentium, …)

• Rogue System Register Read (RSRE) (CVE-2018-3640)
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Is Meltdown (or Spectre) a side-channel attack?

No.

• We read the data directly

• We use a side channel internally for transmission

→ does not make the entire thing a side-channel attack
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Is Meltdown a variant of Spectre? Is it speculative execution?

No.

• Often heard: “Meltdown is speculating beyond faulting

instructions”

→ That’s not speculative execution

• “Speculating beyond faulting instructions” - not even the

actual problem

• AMD does that - but is not affected!

→ Actual problem: fetching & using real values for

instructions after faulting ones
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How can this all be fixed?



Meltdown Mitigation

• Problem is rooted in hardware

• Race condition between the memory fetch and

corresponding permission check

• Serialize both of them

• Hard split of user space and kernel space

• New bit in control register

• Fix the hardware → long-term solution

• Can we fix it in software?
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Meltdown Mitigation

• Kernel addresses in user space are a

problem

• Why don’t we take the kernel

addresses...
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Meltdown Mitigation

• ...and remove them if not needed?

• User accessible check in hardware is

not reliable
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Meltdown Mitigation

• Unmap the kernel in user space

• Kernel addresses are then no longer present

• Memory which is not mapped cannot be accessed at all
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KAISER

Userspace Kernelspace

Applications
Operating
System Memory
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KAISER

Userspace Kernelspace

Applications
Operating
System Memory

Userspace Kernelspace

Applications

Kernel View User View

context switch
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KAISER

• We published KAISER in May 2017 …

• …as a countermeasure against other side-channel attacks

• Inadvertently defeats Meltdown as well

• PoC implementation for the Linux kernel
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KAISER

• Hardware interrupt while running in user mode

• Kernel needs to deal with interrupt but does not exist

anymore in address space

• Traps, NMI, system calls, …

• Must map some kernel code in user space

62 Moritz Lipp, Michael Schwarz, Daniel Gruss | Graz University of Technology



KAISER

• Need to update CR3 in order to switch to other address space

• How can we do this efficiently?

• Instead of one PGD, two PGDs are allocated

• 8k in size and 8k aligned

• Trick: Just flip bit 12 in the pointer to swap between both halves

CR3 Pair

CR3 + 0x1000

CR3

User

Kernel

PGD User

PGD Kernel

C
R
3
[1
2
]
=
1

C
R
3
[1
2
]
=
0
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Kernel Page-table Isolation

• Intel and others improved KAISER

• Merged it into upstream as KPTI (Kernel Page-table

Isolation)

• Kernel patches are available for arm64 as well
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Apple

• Apple released updates in iOS 11.2, macOS 10.13.2 and tvOS

11.2 to mitigate Meltdown

• Boot option: -no-shared-cr3
• Unmaps the user space while running in kernel mode

• But not vice versa
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KVA Shadow

• Kernel Virtual Address (KVA) Shadow

• Meltdown Mitigation for Microsoft Windows
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Implementing

• Introducing such a fundamental change to the operating

system is extremely challenging

• Our PoC implementation contained many bugs as well
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Total Meltdown

• Discovered by Ulf Frisk (@ulffrisk) in the 2018-02 security

update

• CVE-2018-1038

• Modified the PML4 entry of 0x1ed to allow to access page

from user-mode

• On Windows 7 and Server 2018 R2: Self-Referencing Entry

• Allows to read and modify entire physical memory
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What now?



Future

• More attacks exploiting performance optimizations in

hardware

• New variants are disclosed frequently
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A unique chance

A unique chance to

• rethink processor design

• grow up, like other fields (car industry, construction

industry)
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Proof-of-Concept

You can find our proof-of-concept implementation on:

• https://github.com/IAIK/meltdown
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https://github.com/IAIK/meltdown


Conclusion

• Underestimated microarchitectural attacks for a long time

• Meltdown exploit performance optimizations

• Allow to leak arbitrary memory

• Countermeasures come with a performance impact

• Find trade-offs between security and performance
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