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ABSTRACT
Meltdown and Spectre enable arbitrary data leakage from memory

via various side channels. Short-term software mitigations for Melt-

down are only a temporary solution with a significant performance

overhead. Due to hardware fixes, these mitigations are disabled on

recent processors.

In this paper, we show that Meltdown-like attacks are still pos-

sible on recent CPUs which are not vulnerable to Meltdown. We

identify two behaviors of the store buffer, a microarchitectural re-

source to reduce the latency for data stores, that enable powerful

attacks. The first behavior, Write Transient Forwarding forwards

data from stores to subsequent loads even when the load address

differs from that of the store. The second, Store-to-Leak exploits the

interaction between the TLB and the store buffer to leak metadata

on store addresses. Based on these, we develop multiple attacks

and demonstrate data leakage, control flow recovery, and attacks

on ASLR. Our paper shows that Meltdown-like attacks are still pos-

sible, and software fixes with potentially significant performance

overheads are still necessary to ensure proper isolation between

the kernel and user space.
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1 INTRODUCTION
The computer architecture and security communities will remember

2018 as the year of Spectre and Meltdown [47, 51]. Speculative and

out-of-order execution, which have been considered for decades to
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be harmless and valuable performance features, were discovered

to have dangerous industry-wide security implications, affecting

operating systems [47, 51], browsers [1, 47], virtual machines [78],

Intel SGX [74] and cryptographic hardware accelerators [72].

Recognizing the danger posed by this new class of attacks, the

computer industry mobilized. For existing systems, all major OSs

deployed the KAISER countermeasure [25], e.g., on Linux under the

nameKPTI, potentially incurring significant performance losses [23].

For newer systems, Intel announced a new generation of silicon-

based countermeasures, mitigating many transient-execution at-

tacks directly in hardware, while improving overall performance [15].

However, while Intel claims that these fixes correctly address

the hardware issues behind Meltdown and Foreshadow, it remains

unclear whether new generations of Intel processors are properly

protected against Meltdown-type transient-execution attacks. Thus,

in this work we set out to investigate the following questions:

Are new generations of processors adequately protected against transient-
execution attacks? If so, can ad-hoc software mitigations be safely
disabled on post-Meltdown Intel hardware?

Our Contributions. Unfortunately, this paper answers these

questions in the negative, showing that data leakage is still possible

even on newer Meltdown-protected Intel hardware, which avoids

the use of older software countermeasures. At the microarchitec-

tural level, in this work, we focus on the store buffer, a microarchi-

tectural element which serializes the stream of stores and hides the

latency of storing values to memory. In addition to showing how

to effectively leak the contents of this buffer to read kernel writes

from user space, we also contribute a novel side channel on the

translation lookaside buffer (TLB), named Store-to-Leak, that ex-

ploits the lacking permission checks within Intel’s implementation

of the store buffer to break KASLR, to break ASLR from JavaScript,

and to infer the kernel control flow.

Thus, in this work we make the following contributions:

(1) We discover a security flaw due to a shortcut in Intel CPUs,

which we callWrite Transient Forwarding (WTF), that allows

us to read the data corresponding to recent writes.

(2) We demonstrate the security implications of the WTF shortcut

by recovering the values of recent writes performed by the OS

kernel, recovering data from within TSX transactions, as well

as leaking cryptographic keys.

(3) We identify a new TLB side channel, which we call Store-to-
Leak. Store-to-Leak exploits Intel’s store-to-load forwarding

unit in order to reveal when an inaccessible virtual store ad-

dress is mapped to a corresponding physical store address by
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exploiting a missing permission check when forwarding from

these addresses.

(4) We demonstrate how to exploit Store-to-Leak for breaking

KASLR and ASLR from JavaScript, as well as how to use it

to simplify the gadget requirements for Spectre-style attacks.

(5) We identify a new cause for transient execution, namely assists,
which are small microcode routines that execute when the

processor encounters specific edge-case conditions.

(6) We implement the first documentedMeltdown-type attacks that

exploit page fault exceptions due to Supervisor Mode Access

Prevention (SMAP).

Responsible Disclosure. Store-to-leak was responsibly dis-

closed to Intel by the authors from Graz University of Technology

on January 18, 2019. Write Transient Forwarding was then responsi-

bly disclosed to Intel by the authors from the University ofMichigan,

and University of Adelaide and Data61, on January 31, 2019. Intel

indicated that it was previously aware of the Write Transient For-

warding issue, assigning it CVE-2018-12126, Microarchitectural

Store Buffer Data Sampling (MSBDS). According to Intel, we were

the first academic groups to report the two respective issues.

Write Transient Forwarding was also disclosed to AMD, ARM,

and IBM, which stated that none of their CPUs are affected.

RIDL and ZombieLoad. In concurrent works, RIDL [76] and

ZombieLoad [68] demonstrate leakage from the Line Fill Buffer

(LFB) and load ports on Intel processors. They show that faulty

loads can also leak data from these other microarchitectural re-

sources across various security domains. Fallout is different from

and complementary to the aforementioned contributions, as it at-

tacks the store buffer and store instructions, as opposed to loads.

RIDL, ZombieLoad, and this workwere disclosed to the public under

the umbrella name of Microarchitectural Data Sampling (MDS).

2 BACKGROUND
In this section, we present background regarding cache attacks,

transient-execution attacks, Intel’s store buffer implementation,

virtual-to-physical address translation, and finally address-space-

layout randomization (ASLR).

2.1 Cache Attacks
Processor speed increased by several orders of magnitude over

the past decades. While the bandwidth of modern main mem-

ory (DRAM) has also increased, the latency has not kept up with

the change. Consequently, the processor needs to fetch data from

DRAM ahead of time and buffer it in faster internal storage. For this

purpose, processors contain small memory buffers, called caches,

that store frequently or recently accessed data. In modern proces-

sors, the cache is organized in a hierarchy of multiple levels, with

the lowest level being the smallest but also the fastest.

Caches are used to hide the latency of memory accesses, as

there is a speed gap between the processor and DRAM. As a result,

caches inherently introduce timing channels. A multitude of cache

attacks have been proposed over the past two decades [7, 28, 62, 80].

Today, the most important practical attack techniques are Prime+

Probe [62, 63] and Flush+Reload [80]. Some of these techniques

exploit the last-level cache, which is shared and inclusive on most

processors. Prime+Probe attacks constantly measure how long it

takes to fill an entire cache set. Whenever a victim process accesses

a cache line in this cache set, the measured time will be slightly

higher. In a Flush+Reload attack, the attacker constantly flushes

the targeted memory location, e.g., using the clflush instruction.
The attacker then measures how long it takes to reload the data.

Based on the reload time, the attacker determines whether a victim

has accessed the data in the meantime. Flush+Reload has been

used for attacks on various computations, e.g., web server function

calls [81], user input [29, 50, 67], kernel addressing information [27],

and cryptographic algorithms [6, 8, 19, 43, 64, 80].

Covert channels represent a slightly different scenario, in which

the attacker, who controls both the sender and receiver, aims to cir-

cumvent the security policy, leaking information between security

domains. Both Flush+Reload and Prime+Probe have been used as

high-performance covert channels [28, 52, 56].

2.2 Transient-Execution Attacks
Program code can be represented as a stream of instructions. Follow-

ing this instruction stream in strict order would result in numerous

processor stalls while instructions wait for all operands to become

available, even though subsequent instructions may be ready to

run. To optimize this case, modern processors first fetch and de-

code instructions in the front end. In many cases, instructions are

split up into smaller micro-operations (µOPs) [18]. These µOPs are
then placed in the so-called Reorder Buffer (ROB). µOPs that have
operands also need storage space for these operands. When a µOP
is placed in the ROB, this storage space is dynamically allocated

from the load buffer for memory loads, the store buffer for mem-

ory stores, and the register file for register operations. The ROB

entry only references the load and store buffer entries. While the

operands of a µOP still may not be available when it is placed in

the ROB, the processor can now schedule subsequent µOPs. When

a µOP is ready to be executed, the scheduler schedules it for execu-

tion. The results of the execution are placed in the corresponding

registers, load buffer entries, or store buffer entries. When the next

µOP in order is marked as finished, it is retired, and the buffered

results are committed and become architectural.

As software is rarely purely linear, the processor has to either

stall execution until a (conditional) branch is resolved or speculate

on the most likely outcome and start executing along the predicted

path. The results of those predicted instructions are placed in the

ROB until the prediction is verified. If the prediction was correct, the

predicted instructions are retired in order. Otherwise, the processor

flushes the pipeline and the ROB without committing any archi-

tectural changes and execution continues along the correct path.

However, microarchitectural state changes, such as loading data

into the cache or TLB, are not reverted. Similarly, when an interrupt

occurs, operations already executed out of order must be flushed

from the ROB. We refer to instructions that have been executed but

never committed as transient instructions [10, 47, 51]. Spectre-type
attacks [10, 11, 35, 46–48, 54] exploit the transient execution of

instructions before a misprediction is detected. Meltdown-type at-

tacks [5, 10, 39, 40, 46, 51, 72, 74, 78] exploit the transient execution

of instructions before a fault is handled.



2.3 Store Buffer
When the execution unit needs to write data to memory, instead

of waiting for the completion of the store, it merely enqueues the

request in the store buffer. This allows the CPU to continue execut-

ing instructions from the current execution stream, without having

to wait for the write to finish. This optimization makes sense, as

in many cases writes do not influence subsequent instructions, i.e.,

only loads to the same address should be affected. Meanwhile, the

store buffer asynchronously processes the stores, ensuring that

the results are written to memory. Thus, the store buffer prevents

CPU stalls while waiting for the memory subsystem to finish the

write. At the same time, it guarantees that writes reach the memory

subsystem in order, despite out-of-order execution.

For every store operation that is added to the ROB, the CPU

allocates an entry in the store buffer. This entry requires both the

virtual and physical address of the target. On Intel CPUs, the store

buffer has up to 56 entries [42], allowing for up to 56 stores to be

handled concurrently. Only if the store buffer is full, the front end

stalls until an empty slot becomes available again [42].

Although the store buffer hides the latency of stores, it also

increases the complexity of loads. Every load has to search the

store buffer for pending stores to the same address in parallel to

the regular L1 lookup. If the full address of a load matches the

full address of a preceding store, the value from the store buffer

entry can be used directly. This optimization for subsequent loads

is called store-to-load forwarding [34].

2.4 Address Translation and TLB
Memory isolation is the basis of modern operating system security.

For this purpose, processes operate on virtual instead of physical

addresses and are architecturally prevented from interfering with

each other. The processor translates virtual to physical addresses

through a multi-level page-translation table. The process-specific

base address of the top-level table is kept in a dedicated register,

e.g., CR3 on x86, which is updated upon a context switch. The page

table entries track various properties of the virtual memory region,

e.g., user-accessible, read-only, non-executable, and present.

The translation of a virtual to a physical address is time-consuming.

Therefore, processors have special caches, translation-lookaside

buffers (TLBs), which cache page table entries [38].

2.5 Address Space Layout Randomization
To exploit a memory corruption bug, an attacker often requires

knowledge of addresses of specific data. To impede such attacks, dif-

ferent techniques like address space layout randomization (ASLR),

non-executable stacks, and stack canaries have been developed.

KASLR extends ASLR to the kernel, randomizing the offsets where

code, data, drivers, and other mappings are located on every boot.

The attacker then has to guess the location of (kernel) data struc-

tures, making attacks harder.

The double page fault attack by Hund et al. [36] breaks KASLR.

An unprivileged attacker accesses a kernel memory location and

triggers a page fault. The operating system handles the page fault

interrupt and hands control back to an error handler in the user

program. The attacker now measures how much time passed since

triggering the page fault. Even though the kernel address is inac-

cessible to the user, the address translation entries are copied into

the TLB. The attacker now repeats the attack steps, measuring the

execution time of a second page fault to the same address. If the

memory location is valid, the handling of the second page fault will

take less time as the translation is cached in the TLB. Thus, the

attacker learns whether a memory location is valid even though

the address is inaccessible to user space.

The same effect has been exploited by Jang et al. [45] in com-

bination with Intel TSX. Intel TSX extends the x86 instruction set

with support for hardware transactional memory via so-called TSX

transactions. A TSX transaction is aborted without any operating

system interaction if a page fault occurs within it. This reduces the

noise in the timing differences that was present in the attack by

Hund et al. [36] as the page fault handling of the operating system

is skipped. Thus, the attacker learns whether a kernel memory

location is valid with almost no noise at all.

The prefetch side channel presented by Gruss et al. [27] exploits

the software prefetch instruction. The execution time of the instruc-

tion is dependent on the translation cache that holds the correct

entry. Thus, the attacker not only learns whether an inaccessible

address is valid but also the corresponding page size.

3 ATTACK PRIMITIVES
In this section, we introduce the underlying mechanisms for the

attacks we present in this paper. First, we introduce the Write Tran-

sient Forwarding (WTF) shortcut, that allows user applications

to read kernel and TSX writes. We then describe three primitives

based on Store-to-Leak, a side-channel that exploits the interaction

between the store buffer and the TLB to leak information on the

mapping of virtual addresses. We begin with Data Bounce, which
exploits the conditions for Store-to-Leak to attack both user and ker-

nel space ASLR (cf. Section 6). We then exploit interactions between

Data Bounce and the TLB in the Fetch+Bounce primitive. Fetch+

Bounce enables attacks on the kernel at a page-level granularity,

similar to previous attacks [21, 24, 65, 79] (cf. Section 7). We con-

clude this section by augmenting Fetch+Bounce with speculative

execution in Speculative Fetch+Bounce. Speculative Fetch+Bounce
leads to usability improvement in Spectre attacks (cf. Section 8).

3.1 Write Transient Forwarding
In this section, we discuss the WTF shortcut, which incorrectly

passes values from memory writes to subsequent faulting load

instructions. More specifically, as explained in Section 2.3, when

a program attempts to read from an address, the CPU must first

check the store buffer for writes to the same address, and perform

store-to-load forwarding if the addresses match. An algorithm for

handling partial address matches appears in an Intel patent [33].

Remarkably, the patent explicitly states that:

“if there is a hit at operation 302 [lower addressmatch]

and the physical address of the load or store opera-

tions is not valid, the physical address check at oper-

ation 310 [full physical address match] may be con-

sidered as a hit and the method 300 [store-to-load

forwarding] may continue at operation 308 [block

load/forward data from store].”



1 char* victim_page = mmap(..., PAGE_SIZE, PROT_READ | PROT_WRITE,
2 MAP_POPULATE, ...);
3 char* attacker_address = 0x9876543214321000ull;
4

5 int offset = 7;
6 victim_page[offset] = 42;
7

8 if (tsx_begin() == 0) {
9 memory_access(lut + 4096 * attacker_address[offset]);
10 tsx_end();
11 }
12

13 for (i = 0; i < 256; i++) {
14 if (flush_reload(lut + i * 4096)) {
15 report(i);
16 }
17 }

Listing 1: Exploiting the WTF shortcut in a toy example.

That is if address translation of a load µOP fails and some lower

address bits of the load match those of a prior store, the processor

assumes that the physical addresses of the load and the store match

and forwards the previously stored value to the load µOP. We note

that the faulting load is transient and will not retire, hence WTF

has no architectural implications. However, as we demonstrate in

Section 4, the microarchitectural side effects of transient execution

following the faulting load may result in inadvertent information

leaks.

A Toy Example. We begin our investigation of the WTF shortcut

with the toy example in Listing 1, which shows a short code snippet

that exploits the WTF shortcut to read memory addresses with-

out directly accessing them. While Listing 1 uses non-canonical

addresses (i.e., a virtual address in which bits 47 to 63 are neither all

‘0’ nor all ‘1’) to cause a fault, other exception causes are also pos-

sible. We refer to Section 5.2 for a systematic analysis of different

exception types that may trigger WTF. We choose non-canonical

addresses for our first example, as these work reliably across all

processor generations while imposing minimal constraints on the

attacker.

Setup. Listing 1 begins by allocating a victim_page, which is a

‘normal’ page where the user can write and read data. It then defines

the attacker_address variable, which points to a non-canonical

address. Note that dereferencing such a pointer results in a general

protection fault (#GP) [38], faulting the dereferencing load. We then

store the secret value 42 to the specified offset 7 in the user-space

accessible victim_page. This prompts the processor to allocate a

store buffer entry for holding the secret value to be written out to

the memory hierarchy.

Reading Previous Stores. We observe that the code in List-

ing 1 never reads from the victim_page directly. Instead, the at-

tacker reads out the store buffer entry by dereferencing a distinct

attacker_address. We suppress the general protection fault that

results from this access using a TSX transaction (Line 8). Alterna-

tively, the exception can be suppressed through speculative execu-

tion using a mispredicted branch [47], call [47], or return [48, 54].

However, the reorder buffer only handles the exception when the

memory access operation retires. In the meantime, due to the WTF

shortcut, the CPU transiently forwards the value of the previous

store at the same page offset. Thus, the memory access picks-up the
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Figure 1: Access times to the probing array during the exe-
cution of Listing 1. The dip at 42 matches the value from the
store buffer.

value of the store to victim_page, in this example the secret value

42. Using a cache-based covert channel, we transmit the incorrectly

forwarded value (Line 9). Finally, when the failure and transac-

tion abort are handled, no architectural effects of the transiently

executed code are committed.

Recovering the Leaked Data. Using Flush+Reload, the attacker

can recover the leaked value from the cache-based covert channel

(Line 14). Figure 1 shows the results of measured access times to

the look-up-table (lut) on a Meltdown-resistant i9-9900K CPU. As

the figure illustrates, the typical access time to an array element

is above 200 cycles, except for element 42, where the access time

is well below 100 cycles. We note that this position matches the

secret value written to victim_page. Hence, the code can recover

the value without directly reading it.

Reading Writes From Other Contexts. Since there is no re-

quirement for the upper address bits to match, the WTF shortcut

allows any application to read the entire contents of the store buffer.

Such behavior can be particularly dangerous if the store buffer con-

tains data from other contexts. We discuss this in more detail in

Section 4.

3.2 Data Bounce
Our second attack primitive, Data Bounce, exploits that storing to or

forwarding from the store buffer lacks a write-permission check for

the store address, e.g., for read-only memory and kernel memory.

Under normal operating conditions, the full physical address is

required for a valid store buffer entry. The store buffer entry is

already reserved when the corresponding µOPs enter the reorder
buffer. However, the store can only be correctly forwarded if there

is a full virtual address or full physical addresses of the store’s target

are known [42]. This is no contradiction to the previously described

observation, namely that stores can be incorrectly forwarded, e.g.,

in the case of partial address matches. Still, in Data Bounce we

deliberately attempt to have a full virtual address match.We observe

that virtual addresses without a valid mapping to physical addresses

are not forwarded to subsequent loads to the same virtual address.

The basic idea of Data Bounce is to check whether a potentially

illegal data write is forwarded to a data load from the same address.

If the store-to-load forwarding is successful for a chosen address, we

know that the chosen address can be resolved to a physical address.

If done naively, such a test would destroy the value at addresses

which the user can write to. Thus, we only test the store-to-load

forwarding for an address in the transient-execution domain, i.e.,

the write is never committed architecturally.



1 mov (0) � $dummy
2 mov $x � (p)
3 mov (p) � $value
4 mov ($mem + $value * 4096) � $dummy

Figure 2: Data Bounce writes a known value to an accessible
or inaccessible memory location, reads it back, encodes it
into the cache, and finally recovers the value using a Flush+
Reload attack. If the recovered value matches the known
value, the address is backed by a physical page.

Figure 2 illustrates the basic principle of Data Bounce. First, we

start transient execution by generating an exception and catching

it ( 1 ). Alternatively, we can use any of the mechanisms mentioned

in Section 3.1 to suppress the exception. For a chosen address p,
we store a chosen value x using a simple data store operation ( 2 ).

Subsequently, we read the value stored at address p ( 3 ) and encode
it in the cache ( 4 ), as done for WTF (Section 3.1). We can now

use Flush+Reload to recover the stored value, and distinguish two

different cases as follows.

Store-to-Load Forwarding. If the value read from p is x, i.e.,
the x-th page of mem is cached, the store was forwarded to the load.

Thus, we know that p is backed by a physical page. The choice

of the value x is of no importance for Data Bounce. Even in the

unlikely case that p already contains the value x, and the CPU reads

the stale value from memory instead of the previously stored value

x, we still know that p is backed by a physical page.

No Store-to-Load Forwarding. If no page of mem is cached, the
store was not forwarded to the subsequent load. The cause of this

could be either temporary or permanent. If a physical page does

not back the virtual address, store-to-load forwarding always fails,

i.e., even retrying the experiment will not be successful. Temporary

causes for failure include interrupts, e.g., from the hardware timer,

and errors in distinguishing cache hits from cache misses (e.g., due

to power scaling). However, we find that if Data Bounce repeatedly

fails for addr, the most likely cause is that addr is not backed by a

physical page.

Breaking ASLR. In summary, if a value “bounces back” from a

virtual address, the virtual address must be backed by a physical

page. This effect can be exploited within the virtual address space

of a process, e.g., to find which virtual addresses are mapped in a

sandbox (cf. Section 6.2). On CPUs where Meltdown is mitigated

in hardware, KAISER [25] is not enabled, and the kernel is again

mapped in the virtual address space of processes [16]. In this case,

we can also apply Data Bounce to kernel addresses. Even though

we cannot access the data stored at the kernel address, we still can

detect whether a physical page backs a particular kernel address.

Thus, Data Bounce can still be used to break KASLR (cf. Section 6.1)

on processors with in-silicon patches against Meltdown.

Handling Abnormal Addresses. We note that there are some

cases where store forwarding happens without a valid mapping.

However, these cases do not occur under normal operating condi-

tions, hence we can ignore them for the purpose of Data Bounce.

We discuss these conditions in Section 5.

3.3 Fetch+Bounce
Our third attack primitive, Fetch+Bounce, augments Data Bounce

with an additional interaction between the TLB and the store buffer,

allowing us to detect recent usage of virtual pages.

With Data Bounce it is easy to distinguish valid from invalid

addresses. However, its success rate (i.e., how often Data Bounce

has to be repeated) directly depends on which translations are

stored in the TLB. Specifically, we observe cases where store-to-

load forwarding fails when the mapping of the virtual address is not

stored in the TLB. However, in other cases, when the mapping is

already known, the store is successfully forwarded to a subsequent

load. With Fetch+Bounce, we further exploit this TLB-related side-

channel information by analyzing the success rate of Data Bounce.

1 for retry = 0...2
mov $x � (p)

2 mov (p) � $value
mov ($mem + $value * 4096) � $dummy

3 if flush_reload($mem + $x * 4096) then break

Figure 3: Fetch+Bounce repeatedly executes Data Bounce. If
Data Bounce succeeds on the first try, the address is in the
TLB. If it succeeds on the second try, the address is valid but
not in the TLB.

With Fetch+Bounce, we exploit that Data Bounce succeeds im-

mediately if the mapping for the chosen address is already cached

in the TLB. Figure 3 shows how Fetch+Bounce works. The basic

idea is to repeat Data Bounce ( 2 ) multiple times ( 1 ). There are

three possible scenarios, which are also illustrated in Figure 4.
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Figure 4: Mounting Fetch+Bounce on a virtual memory
range allows to clearly distinguishmapped from unmapped
addresses. Furthermore, for every page, it allows to distin-
guish whether the address translation is cached in the TLB.

TLBHit. If the store’s address is in the TLB, Data Bounce succeeds

immediately, aborting the loop ( 3 ). Thus, retry is 0 after the loop.

TLBMiss. If the store’s address is valid but is not in the TLB, Data

Bounce fails in the first attempt, as the physical address needs to

be resolved before store-to-load forwarding. As this creates a new

TLB entry, Data Bounce succeeds in the second attempt (i.e., retry
is 1). Note that this contradicts the official documentation saying

that “transactionally written state will not be made architecturally

visible through the behavior of structures such as TLBs” [38].

Invalid Address. If the address cannot be fetched to the TLB,

store-to-load forwarding fails and retry is larger than 1.

Just like Data Bounce, Fetch+Bounce can also be used on ker-

nel addresses. Hence, with Fetch+Bounce we can deduce the TLB



caching status for kernel virtual addresses. The only requirement is

that the virtual address is mapped to the attacker’s address space.

Fetch+Bounce is not limited to the data TLB (dTLB), but can also

leak information from the instruction TLB (iTLB). Thus, in addition

to recent data accesses, it is also possible to detect which (kernel)

code pages have been executed recently.

One issuewith Fetch+Bounce is that the test loads valid addresses

to the TLB. For a real-world attack (cf. Section 7) this side effect is

undesired, as measurements with Fetch+Bounce destroy the secret-

dependent TLB state. Thus, to use Fetch+Bounce repeatedly on the

same address, we must evict the TLB between measurements, e.g.,

using the strategy proposed by Gras et al. [21].

3.4 Speculative Fetch+Bounce
Our fourth attack primitive, Speculative Fetch+Bounce, augments

Fetch+Bounce with transient-execution side effects on the TLB. The

TLB is also updated during transient execution [70]. That is, we

can even observe transient memory accesses with Fetch+Bounce.

256 pages kernel memory (kernel)

�

if (x < len(array))
y = kernel[array[x] * 4096]

Store in TLB

TLB

Hit

Fetch+Bounce

Kernel

User

Figure 5: Speculative Fetch+Bounce allows an attacker to use
Spectre gadgets to leak data from the kernel, by encoding
them in the TLB.

As a consequence, Speculative Fetch+Bounce poses a novel way

to exploit Spectre. Instead of using the cache as a covert channel in

a Spectre attack, we leverage the TLB to encode the leaked data. The

advantage of Speculative Fetch+Bounce over the original Spectre

attack is that there is no requirement for shared memory between

user and kernel space. The attacker only needs control over an

array index to leak arbitrary memory contents from the kernel.

Figure 5 illustrates the encoding of the data, which is similar to the

original Spectre attack [47]. Depending on the value of the byte to

leak, we access one out of 256 pages. Then, Fetch+Bounce is used

to detect which of the pages has a valid translation cached in the

TLB. The cached TLB entry directly reveals the leaked byte.

4 BREAKING KERNEL ISOLATION
In this section, we show how to use the WTF shortcut to read

data across security domains. We show leakage from the kernel to

user space. Finally, Section 4.3 shows leakage from aborted TSX

transactions.

4.1 Leaking Memory Writes from the Kernel
We start with a contrived scenario to evaluate an attacker’s ability

to recover kernel writes. Our proof-of-concept implementation

consists of two components. The first is a kernel module that writes

to a predetermined virtual address in a kernel page. The second is a

user application that exploits the WTF shortcut using a faulty load

that matches the page offset of the kernel store. The user application

thus retrieves the data written by the kernel. We now describe these

components.

The Kernel Module. Our kernel module performs a sequence

of write operations, each to a different page offset in a different

kernel page. These pages, like other kernel pages, are not directly

accessible to user code. On older processors, such addresses may be

accessible indirectly via Meltdown. However, we do not exploit this

and assume that the user code does not or cannot exploit Meltdown.

The Attacker Application. The attacker application aims to re-

trieve kernel information that would normally be inaccessible from

outside the kernel. The code first uses the mprotect system call to

revoke access to an attacker-controlled page. Note that mprotect
manipulates associated page table entry by clearing the present bit

and applying PTE inversion [13], to cause the physical page frame

number to be invalid.

The attacker application then invokes the kernel module to per-

form the kernel writes and afterward attempts to recover the values

written by the kernel. To do this, the attacker performs a faulty

load from his own protected page and transiently leaks the value

through a covert cache channel.

Increasing theWindow for the Faulty Load. Using WTF, we

can read kernel writes even if the kernel only performed a single
write before returning to the user. However, such an attack succeeds

with low probability, and in most cases, the attack fails at reading

the value stored by the kernel. We believe that the cause of the

failure is that by the time the system switches from kernel to user

mode, the store buffer is drained. Because store buffer entries are

processed in order [3, 4, 33, 44], we can increase the time to drain the

store buffer by performing a sequence of unrelated store operations

in the attacker application or in the kernel module before the store

whose value we would like to extract.

Experimental Evaluation. To evaluate the accuracy of our

attack at recovering kernel writes, we design the following experi-

ment. First, the kernel performs some number of single-byte store

operations to different addresses. The kernel then performs an ad-

ditional and last store to a target address, where we would like to

recover the value written by this store. Finally, the kernel module

returns to user space.

We evaluate the accuracy of our attack in Figure 6. The horizontal

axis indicates the number of stores performed in the kernel module
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Figure 6: The success rate when recovering kernel values
fromuser space as a function of the number of kernel stores.



(including the last targeted store), and the vertical axis is the success

rate. For each data point, we tested the attack on all possible page

offsets for the last kernel write, 100 times for each offset, reporting

the success rate.

For our evaluation, we use three Intel machines with Skylake (i7-

6700), Kaby Lake (i7-7600) and Coffee Lake R (i9-9900K) processors,

each running a fully updated Ubuntu 16.04. As Figure 6 shows, the

kernel module needs to perform 10 or more writes (to different

addresses) before returning to the user for the attack to succeed at

recovering the last kernel store with 50–80% success rate. Finally,

recovering values from a kernel performing a single write before

returning can be done with a success rate of 0.05%.

On processors vulnerable to Meltdown, disabling the KAISER

patch exposes the machine to Meltdown attacks on the kernel.

However, on the Coffee Lake R processor, which includes hardware

countermeasures for Meltdown, KAISER is disabled by default. In

particular, the experiments for this processor in Figure 6 are with

the default Ubuntu configuration. This means that the presence of

the hardware countermeasures in Intel’s latest CPU generations led

to software behavior that is more vulnerable to our attack compared

to systems with older CPUs.

4.2 Attacking the AES-NI Key Schedule
We now proceed to a more realistic scenario. Specifically, we show

how the WTF shortcut can leak to a user the secret encryption keys

processed by the kernel.

The Linux kernel cryptography API supports several standard

cryptographic schemes that are available to third-party kernel mod-

ules and device drivers which need cryptography. For example, the

Linux key management facility and disk encryption services, such

as eCryptfs [32], heavily rely on this cryptographic library.

To show leakage from the standard cryptographic API, we im-

plemented a kernel module that uses the library to provide user

applications with an encryption oracle. We further implemented a

user application that uses the kernel module. The AES keys that

the kernel module uses are only stored in the kernel and are never

shared with the user. However, our application exploits the WTF

shortcut to leak these keys from the kernel. We now describe the

attack in further details.

AES and AES-NI. A 128-bit AES encryption or decryption opera-

tion consists of 10 rounds. The AES key schedule algorithm expands

the AES master key to generate a separate 128-bit subkey for each

of these rounds. An important property of the key scheduling algo-

rithm is that it is reversible. Thus, given a subkey, we can reverse

the key scheduling algorithm to recover the master key. For further

information on AES, we refer to FIPS [59].

Since encryption is a performance-critical operation and to pro-

tect against side-channel attacks [62], recent Intel processors imple-

ment the AES-NI instruction set [31], which provides instructions

that perform parts of the AES operations. In particular, the aeskey-

genassist instruction performs part of the key schedule algorithm.

Key Scheduling in Linux. The Linux implementation stores the

master key and the 10 subkeys in consecutive memory locations.

With each subkey occupying 16 bytes, the total size of the expanded

key is 176 bytes. Where available, the Linux kernel cryptography

API uses AES-NI for implementing the AES functionality. Part of

1 aeskeygenassist $0x1, %xmm0, %xmm1
2 callq <_key_expansion_128>
3 aeskeygenassist $0x2, %xmm0, %xmm1
4 callq <_key_expansion_128>
5 ...
6 <_key_expansion_128>:
7 pshufd $0xff,%xmm1,%xmm1
8 shufps $0x10,%xmm0,%xmm4
9 pxor %xmm4,%xmm0
10 shufps $0x8c,%xmm0,%xmm4
11 pxor %xmm4,%xmm0
12 pxor %xmm1,%xmm0
13 movaps %xmm0,(%r10)
14 add $0x10,%r10
15 retq

Listing 2: AES-NI key schedule.

the code that performs key scheduling for 128-bit AES appears

in Listing 2. Lines 1 and 3 invoke aeskeygenassist to perform a

step of generating a subkey for a round. The code then calls the

function _key_expansion_128, which completes the generation of

the subkey. The process repeats ten times, once for each round. (To

save space we only show two rounds.)

_key_expansion_128 starts at Line 6. It performs the operations

needed to complete the generation of a 128-bit AES subkey. It then

writes the subkey to memory (Line 13) before advancing the pointer

to prepare for storing the next subkey (Line 14) and returning.

Finding the Page Offset. We aim to capture the key by leaking

the values stored in Line 13. For that, the user application repeat-

edly invokes the kernel interface that performs the key expansion

as part of setting up an AES context. Because the AES context is

allocated dynamically, its address depends on the state of the ker-

nel’s memory allocator at the time the context is allocated. This

prevents immediate use of our attack because the attacker does not

know where the subkeys are stored.

We use the WTF shortcut to recover the page offset of the AES

context. Specifically, the user application scans page offsets. For

each offset, it asks the kernel module to initialize the AES context.

It then performs a faulty load from a protected page at the scanned

offset and checks if any data leaked. To reduce the number of

scanned offsets, we observe that, as described above, the size of the

expanded key is 176 bytes. Hence, we can scan at offsets that are
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128 bytes apart and have the confidence that at least one of these

offsets falls within the expanded key. Indeed, running the attack

for five minutes, we get Figure 7. The figure shows the number of

leaked values at each offset over the full five minutes. We note the

spike at offset 0x110. We compare the result to the ground truth and

find that the expanded key indeed falls at offset 0x110. We further

find that the leaked byte matches the value at page offset 0x110.

Key Recovery. Once we find one offset within the expanded key,

we know that neighboring offsets also fall within the expanded key,

and we can use theWTF shortcut to recover the other key bytes. We

experiment with 10 different randomly selected keys and find that

we can recover the 32 bytes of the subkeys of the two final rounds

(rounds 9 and 10) without errors within two minutes. Reversing

the key schedule on the recovered data gives us the master key.

4.3 Reading Data from TSX Transactions
Intel TSX guarantees that computation inside a transaction is either

fully completed, having its outputs committed to memory or fully

reverted if the transaction fails for any reason. In either case, TSX

guarantees that intermediate computation values (which are not

part of the final output) never appear in process memory. Building

on this property, Guan et al. [30] suggest using TSX to protect

cryptographic keys against memory disclosure attacks by keeping

the keys encrypted, decrypting them inside a transaction, and fi-

nally zeroing them out before finishing the transaction. This way,

Guan et al. [30] ensure that the decrypted keys never appear in the

process’ main memory, making them safe from disclosure.

Exploiting theWTF shortcut and Data Bounce against TSX trans-

actions, we are able to successfully recover intermediate values,

and hidden control flow from within completed or aborted TSX

transactions.

5 INVESTIGATING STORE BUFFER LEAKAGE
In this section, we form a foundation for understanding the under-

lying mechanisms involved inWTF and Data Bounce. We start with

a discussion of microcode assists, a hitherto uninvestigated cause

for transient execution that extends the Meltdown vs. Spectre clas-

sification of Canella et al. [10]. We continue with the investigation

of the underlying conditions for both WTF and Data Bounce. We

conclude by testing our attacks in multiple processor generations.

5.1 Microcode Assists
µOPs are typically implemented in hardware. However, when com-

plex processing is required for rare corner cases, a hardware imple-

mentation may not be cost-effective. Instead, if such a case occurs

during the execution of a µOP, the µOP is re-dispatched, i.e., sent
back to the dispatch queue for execution, together with amicrocode
assist, a microcode procedure that handles the more complex sce-

nario. Cases in which microcode assists can occur include handling

of subnormal floating point numbers, the use of REP MOV instruc-

tion to copy large arrays, and others [14, 42].

Microcode-Assisted Memory Accesses. According to an Intel

patent [20], when the processor handles a memory access (load or

store) it needs to translate the virtual address specified by the pro-

gram to the corresponding physical address. For that, the processor

first consults the Data Translation Look-aside Buffer (dTLB), which

1 char* victim_page = mmap(..., PAGE_SIZE, ...);
2 char* attacker_page = mmap(..., PAGE_SIZE, ...);
3

4 offset = 7;
5 victim_page[offset] = 42;
6

7 clear_access_bit(attacker_page);
8 memory_access(lut + 4096 * attacker_page[offset]);
9

10 for (i = 0; i < 256; i++) {
11 if (flush_reload(lut + i * 4096)) {
12 report(i);
13 }
14 }

Listing 3: Exploiting the WTF Shortcut with microcode
assists. Note that no fault suppressison is required.

caches the results of recent translations. In the case of a page miss,

i.e., when the virtual address is not found in the dTLB, the page miss
handler (PMH) attempts to consult the page table to find the trans-

lation. In most cases, this translation can be done while the µOP
is speculative. However, in some cases, the page walk has side ef-

fects that cannot take place until the µOP retires. Specifically, store

operations should mark pages as dirty and all memory operations

should mark pages as accessed. Performing these side effects while

the µOP is speculative risks generating an architecturally-visible

side effect for a transient µOP. (Recall that the processor cannot
determine whether speculative µOPs will retire or not.) At the same

time, recording all the information required for setting the bits

on retirement would require a large amount of hardware that will

only be used in relatively rare cases. Thus, to handle these cases,

the processor re-dispatches the µOP and arranges for a microcode

assist to set the bits when the µOP retires. See the patent [20] for

further details on the process.

Recall (Section 2.2) that Canella et al. [10] classify transient-

execution attacks based on the cause of transient execution. Spectre-

type attacks are caused by misprediction of data or control flow,

whereas Meltdown-type attack are caused by transient execution

beyond a fault. As described above, a µOP re-dispatch occurring as

part of handling microcode assists also causes transient execution.

Assist-basedWTF. To test the effects of microcode assists on the

WTF shortcut, we use the code in Listing 3. To mark attack_page
as not accessed (Line 7), we can either use the Linux idle page

tracking interface [17] or the page table manipulation options in

SGX-Step [75]. Using these methods for clearing the accessed bit

requires elevated privileges. However, some operating systems may

clear the accessed bit regularly or upon paging pressure, obviating

the need for root access. Furthermore, because microcode assists do

not generate faults, we do not need fault suppression, and remove

the TSX transaction.

Assist-based vs. Meltdown-type. Canella et al. [10] list sev-

eral properties of Meltdown-type attacks. Assist-based transient

execution shares some properties with Meltdown-type techniques.

Specifically, it relies on deferred termination of a µOP to bypass

hardware security barriers and attacks based on it can be miti-

gated by preventing the original leak. However, unlike Meltdown-

type techniques, assists do not rely on architectural exceptions.

Consequently, no fault suppression techniques are required. Thus,

assist-based techniques represent a new cause to trigger transient



execution. In a concurrent work, Schwarz et al. [68] also identify

that assists result in transient execution. They extend the definition

of Meltdown-type to include microcode assists, which they describe

as “(microarchitectural) faults”.

5.2 Analyzing WTF
In this section we deepen our investigation of WTF by considering

various causes for faulting loads and the fault suppression used.

Particularly, for fault-suppression we experiment with both TSX-

based suppression and with using branch misprediction. We ran

our experiments on three Intel processors: Coffee Lake R i9-9900K,

Kaby Lake i7-7600U, and Skylake i7-6700. The only exception is

Protection Keys, which are not available on these processors, and

were tested on a Xeon Silver 4110 processor. To the best of our

knowledge, no Coffee Lake R processor supports Protection Keys.

We summarize the results in Table 1.

We use the toy example in Listing 1 with multiple combinations

of causes of illegal loads and fault-suppression mechanisms for the

load. Following the analysis by Canella et al. [10], we systematically

investigated the following exception types as causes for illegal loads.

Non-Canonical. We found that the easiest way to triggerWTF is

by provoking a general protection exception (#GP) when accessing a

non-canonical address outside of the valid range of virtual addresses

represented by the processor [38]. Our experiments show that this

technique works reliably on all tested processors and exception

suppression mechanisms.

Supervisor Fault. We note that on Linux even when KPTI is

enabled, some kernel code pages remain mapped in a user process’s

address space (see Section 6.1) and can hence be used to provoke

faulting loads on kernel addresses (raising a #PF exception). We

found that supervisor page faults can be successfully abused to

trigger WTF on all tested processors and exception suppression

mechanisms.

Supervisor Mode Access Prevention (SMAP). For complete-

ness, we also tested whether WTF can be triggered by SMAP fea-

tures [38]. For this experiment, we explicitly dereference a user

space pointer in kernel mode such that SMAP raises a #PF exception.

We observed that SMAP violations may successfully trigger the

WTF shortcut on all tested processors and exception suppression

mechanisms. While we do not consider this to be an exploitable

attack scenario, SMAP was to the best of our knowledge previously

considered to be immune to any Meltdown-type effects [10].

Protection Key Fault. We investigated triggering WTF via

reading from pages marked as unreadable using Intel’s Protection

Key mechanism [38], which also raises a page fault (#PF) exception.

We found that Protection Key violations may successfully trigger

WTF on the tested Xeon processor with all exception suppression

mechanisms.

Misalignment in Advanced Vector Extensions (AVX). We

investigated whether WTF may also be triggered by general pro-

tection fault exceptions (#GP) generated by misaligned AVX load

instructions [38]. Interestingly, we found that this technique works

exclusively using TSX exception suppression on recent Coffee Lake

R processors.

Non-Present Fault and Coffee Lake R Regression. We in-

vestigated triggering WTF from non-present pages both with and

Fault Suppression TSX Misprediction
Architecture Pre CL R CL R Pre CL R CL R

Non-canonical ✓ ✓ ✓ ✓

Kernel pages ✓ ✓ ✓ ✓

User pages with SMAP ✓ ✓ ✓ ✓

Protection keys ✓ N/A ✓ N/A

AVX misalignment ✗ ✓ ✗ ✗

Not present with PTE inversion ✗ ✓ ✗ ✗

Not present without PTE inversion ✗ ✗ ✗ ✗

Table 1: Evaluating the WTF shortcut using different fault-
inducing and fault-suppression mechanisms on Intel archi-
tectures before Coffee Lake R (pre CL R) and on Coffee Lake
R (CL R). ✓ and ✗ indicate attack success. ✓○ and ✗○ indicate
behavior change in Coffee Lake R.

without PTE inversion [13]. In our experiments, we created the

former using the mprotect system call with the permission set to

PROT_NONE, and the latter by unmapping the target page using the

munmap system call. While dereferencing non-present pages always

causes the CPU to raise a page fault (#PF) exception, we noticed

a troubling regression in Intel’s newest Coffee Lake R architecture.

Where, unlike earlier generations, we can successfully trigger the

WTF shortcut on Coffee Lake R processors when accessing a page

marked as non-present from within a TSX transaction.

Interestingly, our investigation revealed that the behavior in the

case of non-present pages depends on the contents of the page-

frame number in the page-table entry. Specifically, we have only

seen WTF working on Coffee Lake R when the page-frame number

in the PTE refers to an invalid page frame or to EPC pages. We

note that widely deployed PTE inversion [13] software mitigations

for Foreshadow modify the contents of the page-frame number

for pages protected with mprotect to point to invalid page frames

(i.e., not backed by physical DRAM). Our experiments show that

the WTF shortcut is only triggered when loading from these pages

from within a TSX transaction, whereas WTF seems not to be

activated when dereferencing unmapped pages with valid page-

frame numbers, both inside or outside TSX. We suspect that the

CPU inhibits some forms of transient execution within branch

mispredictions while allowing them in TSX transactions.

5.3 Analyzing Store-to-Leak
Store-to-Leak exploits address resolution logic in the store buffer.

Namely, that in case of a full virtual address match between a load

and a prior store, store-to-load forwarding logic requires that the

load operation may only be unblocked after the physical address
of the prior store has been resolved [33]. In this case, if the tested

virtual address has a valid mapping to a physical address, whether

accessible to the user or not, the store is forwarded to the load.

Recovering Information About Address Mapping. The suc-

cess of Store-to-Leak, therefore, provides two types of side-channel

information on the address mapping of the tested virtual address.

First, we observed that Data Bounce reliably triggers forwarding

in the first attempt when writing to addresses that have a valid

virtual mapping in the TLB. Secondly, when writing to addresses



CPU Data Bounce Fetch+Bounce Speculative
Fetch+Bounce

WTF

Pentium 4 531 ✓ ✗ ✗ ✗

i5-3230M ✓ ✓ ✓ ✓

i7-4790 ✓ ✓ ✓ ✓

i7-6600U ✓ ✓ ✓ ✓

i7-6700K ✓ ✓ ✓ ✓

i7-8650U ✓ ✓ ✓ ✓

i9-9900K ✓ ✓ ✓ ✓

E5-1630 v4 ✓ ✓ ✓ ✓

Table 2: Attack techniques and processors we evaluated.

that have a valid physical mapping but are currently not cached

in the TLB, we found that Store-to-Leak still works after multiple

repeated Data Bounce attempts. Overall, as Data Bounce never per-

forms forwarding for unmapped addresses that do not have a valid

physical mapping, the attacker may learn whether an address has

a valid physical mapping and whether this mapping was cached

inside the TLB.

Finally, we also observed two exceptions to the above, in which

Store-to-Leak may still trigger forwarding for addresses that are

not backed by a valid virtual address mapping. We now proceed to

explain these exceptions and how they affect Store-to-Leak.

The Strange Case of Non-Canonical Addresses. First, we

experimentally confirmed that on all tested processors, Data Bounce

forwards data when writing to and subsequently reading from a

non-canonical address. This behavior is peculiar since dereferencing

non-canonical addresses always generates a general protection fault

(#GP) as these addresses are invalid by definition and can never be

backed by a physical address [38]. We note, however, that all attack

techniques based on Store-to-Leak only use canonical addresses

and our attacks are hence not hindered by these observations.

Non-Present Pages and Coffee Lake R. Secondly, we noticed

a different behavior in Intel’s newest Coffee Lake R architecture.

Where, unlike earlier generations, we can successfully trigger Data

Bounce when accessing a non-present page from within a TSX

transaction. Notably, we have only seen Store-to-Leak forwarding

for non-present pages on Coffee Lake R when the page-frame num-

ber in the PTE refers to an invalid page frame, and Data Bounce

executes within a TSX transaction. We have not seen this behav-

ior with any other fault-suppression primitive or on any other

TSX-enabled CPU. Furthermore, note that we never encountered

an inverted kernel page table entry, but instead observed that un-

mapped kernel pages always have an all-zero page-frame number.

Hence, the Store-to-Leak attacks described in this paper are not

affected by these observations.

5.4 Environments
We evaluated all attack techniques on multiple Intel CPUs. All

attack primitives worked on all tested CPUs, which range from the

Ivy Bridge architecture (released 2012) to Whiskey Lake and Coffee

Leak R (both released end of 2018). The only exception is a Pentium

4 Prescott CPUs (released 2004), on which only Data Bounce works.

Table 2 contains the list of CPUs we used for evaluation.

Next, the attack primitives are not limited to the Intel’s Core

architecture but also work on Intel’s Xeon architecture. Thus, our

attacks are not limited to consumer devices, but can also be used

in the cloud. Furthermore, our attacks even work on CPUs with

silicon fixes for Meltdown and Foreshadow, such as the i7-8565U

and i9-9900K [16]. Finally, we were unable to reproduce our attack

primitives on AMD and ARM CPUs, limiting the attacks to Intel.

6 ATTACKS ON ASLR
In this section, we evaluate our attack on ASLR in different scenar-

ios. As Data Bounce can reliably detect whether a physical page

backs a virtual address, it is well suited for breaking all kinds of

ASLR. In Section 6.1, we show that Data Bounce is the fastest way

and most reliable side-channel attack to break KASLR on Linux,

and Windows, both in native environments as well as in virtual

machines. In Section 6.2, we describe that Data Bounce can even

be mounted from JavaScript to break ASLR of the browser.

6.1 Breaking KASLR
We now show that Data Bounce can reliably break KASLR. We

evaluate the performance of Data Bounce in two different KASLR

breaking attacks, namely de-randomizing the kernel base address

as well as finding and classify modules based on detected size.

De-randomizing the Kernel Base Address. On Linux systems,

KASLR had been supported since kernel version 3.14 and enabled

by default since around 2015. As Jang et al. [45] note, the amount

of entropy depends on the kernel address range as well as on the

alignment size, which is usually a multiple of the page size.

We verified this by checking /proc/kallsyms across multiple

reboots. With a kernel base address range of 1GB and a 2MB align-

ment, we get 9 bits of entropy, allowing the kernel to be placed at

one of 512 possible offsets.

Using Data Bounce, we now start at the lower end of the address

range and test all of the 512 possible offsets. If the kernel is mapped

at a tested location, we will observe a store-to-load forwarding

identifying the tested location as having a valid mapping to a phys-

ical address. Table 3 shows the performance of Data Bounce in

de-randomizing kernel ASLR. We evaluated our attack on both an

Intel Skylake i7-6600U (without KAISER) and a new Intel Coffee

Lake i9-9900K that already includes fixes for Meltdown [51] and

Foreshadow [74]. We evaluated our attack on both Windows and

Linux, achieving similar results.

For the evaluation, we tested 10 different randomizations (i.e., 10

reboots). In each, we try to break KASLR 100 times, giving us a total

of 1000 samples. For evaluating the effectiveness of our attack, we

use the F1-score. On the i7-6600U and the i9-9900K, the F1-score for

finding the kernel ASLR offset is 1when testing every offset a single

time, indicating that we always find the correct offset. In terms

of performance, we outperform the previous state of the art [45]

even though our search space is 8 times larger. Furthermore, to

evaluate the performance on a larger scale, we tested a single offset

100 million times. In that test, the F1-score was 0.9996, showing

that Data Bounce virtually always works. The few misses that we

observe are possibly due to the store buffer being drained or that

our test program was interrupted.

Finding andClassifying KernelModules. The kernel reserves

1GB for modules and loads them at 4 kB-aligned offset. In a first

step, we can use Data Bounce to detect the location of modules

by iterating over the search space in 4 kB steps. As kernel code is



Processor
Target

#Retries #Offsets Time F1-Score

Skylake (i7-6600U)

base 1 512 72 µs 1

direct-physical 3 64000 13.648ms 1

module 32 262144 1.713 s 0.98

Coffee Lake (i9-9900K)

base 1 512 42 µs 1

direct-physical 3 64000 8.61ms 1

module 32 262144 1.33 s 0.96

Table 3: Evaluation of Data Bounce in finding the kernel
base address, its direct-physical map, and the kernel mod-
ules. Number of retries refers to the maximum number of
times an offset is tested, and number of offsets denotes the
maximum number of offsets that need to be tried.

always present and modules are separated by unmapped addresses,

we can detect where a module starts and ends. In a second step,

we use this information to estimate the size of all loaded kernel

modules. The world-readable /proc/modules file contains informa-

tion on modules, including name, size, number of loaded instances,

dependencies on other modules, and load state. For privileged users,

it additionally provides the address of the module. We correlate

the size from /proc/modules with the data from our Data Bounce

attack and can identify all modules with a unique size. On the i7-

6600U, running Ubuntu 18.04 (kernel version 4.15.0-47), we have a

total of 26 modules with a unique size. On the i9-9900K, running

Ubuntu 18.10 (kernel version 4.18.0-17), we have a total of 12 mod-

ules with a unique size. Table 3 shows the accuracy and performance

of Data Bounce for finding and classifying those modules.

Breaking KASLR with the KAISER Patch. As a countermea-

sure to Meltdown [51], OSs running on Intel processors prior to

Coffee Lake R have deployed the KAISER countermeasure, which

removes the kernel from the address space of user processes (see

Figure 8 (bottom)). To allow the process to switch to the kernel

address space, the system leaves at least one kernel page in the

address space of the user process. Because the pages required for

the switch do not contain any secret information, there is no need

to hide them from Meltdown [12].

However, we observed that the pages that remain in the user

space are randomized using the same offset as KPTI. Hence, we

can use Data Bounce to de-randomize the kernel base address even

with KPTI enabled. To the best of our knowledge, we are the first to

demonstrate KASLR break with KPTI enabled. Finally, we note that

on CPUs with hardware Meltdown mitigation, our KASLR break

is more devastating, because we can de-randomize not only the

kernel base address but also the kernel modules

6.2 Recovering Address Space Information
from JavaScript

In addition to unprivileged native applications, Data Bounce can

also be used in JavaScript to leak partial information on allocated

and unallocated addresses in the browser. This information can

potentially lead to breaking ASLR. In this section, we evaluate the

performance of Data Bounce from JavaScript running in a mod-

ern browser. We conducted this evaluation on Google Chrome

70.0.3538.67 (64-bit) and Mozilla Firefox 66.0.2 (64-bit).
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Figure 8: (Top) Address space with KASLR but without
KAISER. (Bottom) User space with KASLR and KAISER.
Most of the kernel is not mapped in the process’s address
space anymore.

There are two main challenges for mounting Data Bounce from

JavaScript. First, there is no high-resolution timer available. There-

fore, we need to build our own timing primitive. Second, as there

is no flush instruction in JavaScript, Flush+Reload is not possible.

Thus, we have to resort to a different covert channel for bringing

the microarchitectural state to the architectural state.

Timing Primitive. To measure timing with a high resolution,

we rely on the well-known use of a counting thread in combination

with shared memory [22, 69]. As Google Chrome has re-enabled

SharedArrayBuffers in version 67 [2], we can use the existing

implementations of such a counting thread. In Firefox, we emulated

this behavior by manually enabling SharedArrayBuffers.
In Google Chrome, we can also use the BigUint64Array to en-

sure that the counting thread does not overflow. This improves

the measurements compared to the Uint32Array used in previous

work [22, 69] as the timestamp is increasing strictly monotonically.

In our experiments, we achieve a resolution of 50 ns in Google

Chrome, which is sufficient to distinguish a cache hit from a miss.

Covert Channel. As JavaScript does not provide a method

to flush an address from the cache, we have to resort to eviction,

as shown in previous work [22, 47, 61, 69, 77]. Thus, our covert

channel from the microarchitectural to the architectural domain,

i.e., the decoding of the leaked value which is encoded into the

cache, uses Evict+Reload instead of Flush+Reload.

For the sake of simplicity, we can also access an array 2–3 times

larger than the last-level cache to ensure that data is evicted from

the cache. For our proof-of-concept, we use this simple approach

as it is robust and works for the attack. While the performance

increases significantly when using targeted eviction, we would

require 256 eviction sets. We avoid generating these eviction sets

because the process is time-consuming and prone to errors.

Illegal Access. In JavaScript, we cannot access an inaccessible

address architecturally. However, as all modern browsers use just-

in-time compilation to convert JavaScript to native code, we can

leverage speculative execution to prevent the fault. Hence, we rely

on the same code as Kocher et al. [47] to speculatively access an out-

of-bounds index of an array. This allows to iterate over the memory

(relative from our array) and detect which pages are mapped and

which pages are not mapped.



Figure 9: Data Bounce with Evict+Reload in JavaScript
clearly shows whether an address (relative to a base address)
is backed by a physical page and thus valid.

Full Exploit. When putting everything together, we can dis-

tinguish for every location relative to the start array, whether a

physical page backs it or not. Due to the limitations of the JavaScript

sandbox, especially due to the slow cache eviction, the speed is or-

ders of magnitude slower than the native implementation, as it can

be seen in Figure 9. Still, we can detect whether a virtual address

is backed by a physical page within 450ms, making Data Bounce

also realistic from JavaScript.

7 FETCH+BOUNCE
Fetch+Bounce uses Data Bounce to spy on the TLB state and en-

ables more powerful attacks as we show in this section. So far, most

microarchitectural side-channel attacks on the kernel require at

least some knowledge of physical addresses [65, 67]. Since physi-

cal addresses are not provided to unprivileged applications, these

attacks either require additional side channels [26, 67] or have to

blindly attack targets until the correct target is found [71].

With Fetch+Bounce we directly retrieve side-channel informa-

tion for any target virtual address, regardless of the access permis-

sions in the current privilege level. We can detect whether a virtual

address has a valid translation in either the iTLB or dTLB, thereby

allowing an attacker to infer whether an address was recently used.

Fetch+Bounce allows an attacker to detect recently accessed

data pages in the current hyperthread. Moreover, an attacker can

also detect code pages recently used for instruction execution in

the current hyperthread. Next, as the measurement with Fetch+

Bounce results in a valid mapping of the target address, we also

require a method to evict the TLB. While this can be as simple as

accessing (dTLB) or executing (iTLB) data on more pages than there

are TLB entries, this is not an optimal strategy. Instead, we rely on

the reverse-engineered eviction strategies from Gras et al. [21].

We first build an eviction set for the target address(es) and then

loop Fetch+Bounce on the target address(es) to detect potential

activity, before evicting the target address(es) again from iTLB and

dTLB. Below, we demonstrate this attack on the Linux kernel.

7.1 Inferring Control Flow of the Kernel
The kernel is a valuable target for attackers, as it processes all inputs

coming from I/O devices. Microarchitectural attacks targeting user

input directly in the kernel usually rely on Prime+Probe [58, 61, 66,

67] and thus require recovery of physical address information.

With Fetch+Bounce, we do not require knowledge of physical

addresses to spy on the kernel. In the following, we show that

Fetch+Bounce can spy on any type of kernel activity. We illustrate

this with the examples of mouse input and Bluetooth events.
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Figure 10: Mouse movement detection. The mouse move-
ments are clearly detected. The USB keyboard activity does
not cause more TLB hits than observed as a baseline.

As a proof of concept, we monitor the first 8 pages of a target

kernel module. To obtain a baseline for the general kernel activ-

ity, and thus the TLB activity for kernel pages, we also monitor

one reference page from a rarely-used kernel module (in our case

i2c_i801). By comparing the activity on the 8 pages of the ker-

nel module to the baseline, we determine whether the module is

currently used or not. For best results, we use Fetch+Bounce with

both the iTLB and dTLB. This makes the attack independent of the

activity type in the module, i.e., there is no difference between data

access and code execution. Our spy changes its hyperthread after

each Fetch+Bounce measurement. While this reduces the attack’s

resolution, it allows to detect activity on all hyperthreads. Next, we

sum the resulting TLB hits over a sampling period which consists

of 5000 measurements, and then apply a basic detection filter to

this sum by calculating the ratio between hits on the target and

reference pages. If the number of hits on the target pages is above

a sanity lower bound and above the number of cache hits on the

reference page, i.e., above the baseline, then the page was recently

used.

Detecting User Input. We now investigate how well Fetch+

Bounce works for spying on input-handling code in the kernel.

While [67] attacked the kernel code for PS/2 keyboards, we target

the kernel module for USB human-interface devices, allowing us to

monitor activity on a large variety of modern USB input devices.

We first locate the kernel module using Data Bounce as described

in Section 6.1. With 12 pages (kernel 4.15.0), the module does not

have a unique size among all modules but is 1 of only 3. Thus, we

can either try to identify the correct module or monitor all of them.

Figure 10 shows the results of using Fetch+Bounce on a page

of the usbhid kernel module. It can be clearly seen that mouse

movement results in a higher number of TLB hits. USB keyboard

input, however, seems to fall below the detection threshold with

our simple method. Given this attack’s low temporal resolution,

repeated accesses to a page are necessary for clear detection. Previ-

ous work has shown that such an event trace can be used to infer

user input, e.g., URLs [49, 61].

Detecting Bluetooth Events. Bluetooth events can give valu-

able information about the user’s presence at the computer, e.g.,

connecting (or disconnecting) a device usually requires some form

of user interaction. Tools, such as Windows’ Dynamic Lock [57],

use the connect and disconnect events to unlock and lock a com-

puter automatically. Thus, these events are a useful indicator for

detecting whether the user is currently using the computer, as well

as serve as a trigger signal for UI redressing attacks.
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Figure 11: Detecting Bluetooth events by monitoring TLB
hits via Fetch+Bounce on pages at the start of the bluetooth
kernel module.

To spy on these events, we first locate the Bluetooth kernel

module using Data Bounce. As the Bluetooth module is rather large

(134 pages on kernel 4.15.0) and has a unique size, it is easy to

distinguish it from other kernel modules.

Figure 11 shows a Fetch+Bounce trace while generating Blue-

tooth events. While there is a constant noise floor due to TLB

collisions, we can see a clear increase in TLB hits on the target

address for every Bluetooth event. After applying our detection

filter, we can detect events such as connecting and playing audio

over the Bluetooth connection with a high accuracy.

Our results indicate that the precision of the detection and dis-

tinction of events with Fetch+Bounce can be significantly improved.

Future work should investigate profiling code pages of kernel mod-

ules, similar to previous template attacks [29].

8 LEAKING KERNEL MEMORY
In this section, we present Speculative Fetch+Bounce, a novel

covert channel to leak memory using Spectre. Most Spectre at-

tacks, including the original Spectre attack, use the cache as a

covert channel to encode values leaked from the kernel [11, 35, 46–

48, 54, 60, 70]. Other covert channels for Spectre attacks, such as

port contention [9] or AVX [70] have since been presented. How-

ever, it is unclear how commonly such gadgets can be found and

can be exploited in real-world software.

With Speculative Fetch+Bounce, we show how TLB effects on

the store buffer (cf. Section 7) can be combined with speculative

execution to leak kernel data. We show that any cache-based Spec-

tre gadget can be used for Speculative Fetch+Bounce. As secret-

dependent page accesses also populates the TLB, such a gadget also

encodes the information in the TLB. With Data Bounce, we can

then reconstruct which of the pages was accessed and thus infer the

secret. While at first, the improvements over the original Spectre

attack might not be obvious, there are two advantages.

Advantage 1: It requires less control over the Spectre gadget.
First, for Speculative Fetch+Bounce, an attacker requires less control

over the Spectre gadget. In the original Spectre Variant 1 attack, a

gadget like if ( index < bounds ) { y = oracle[ data[index]
* 4096 ]; } is required. There, an attacker requires full control

over index, and also certain control over oracle. Specifically, the
base address of oracle has to point to user-accessible memory

which is shared between attacker and victim. Furthermore, the base

address has to either be known or be controlled by the attacker. This

limitation potentially reduces the number of exploitable gadgets.

Advantage 2: It requires no shared memory. Second, with

Speculative Fetch+Bounce, we get rid of the shared-memory re-

quirement. Especially on modern operating systems, shared mem-

ory is a limitation, as these operating systems provide stronger

kernel isolation [25]. On such systems, only a few pages are mapped

both in user and kernel space, and they are typically inaccessible

from the user space. Moreover, the kernel can typically not ac-

cess user space memory due to supervisor mode access prevention

(SMAP). Hence, realistic Spectre attacks have to resort to Prime+

Probe [73]. However, Prime+Probe requires knowledge of physical

addresses, which is not exposed on modern operating systems.

With Speculative Fetch+Bounce, it is not necessary to have a

memory region which is user accessible and shared between user

and kernel. For Speculative Fetch+Bounce, it is sufficient that the

base address of oracle points to a kernel address which is also

mapped in user space. Even in the case of KPTI [53], there are still

kernel pages mapped in the user space. On kernel 4.15.0, we identi-

fied 65536 such kernel pages when KPTI is enabled, and multiple

gigabytes when KPTI is disabled. Hence, oracle only has to point

to any such range of mapped pages. Thus, we expect that there are

simpler Spectre gadgets which are sufficient to mount this attack.

Leaking Data. To evaluate Speculative Fetch+Bounce, we use a

custom ioctl in the Linux kernel containing a Spectre gadget as

described before. We were able to show that our proof-of-concept

Spectre attack works between user and kernel in modern Linux

systems, without the use of shared memory.

9 DISCUSSION AND COUNTERMEASURES
Intel recently announced [37] that new post-Coffee Lake R proces-

sors are shippedwith silicon-level mitigations againstWTF (MSBDS

in Intel terminology). However, to the best of our knowledge, Intel

did not release an official statement regarding Store-to-Leak miti-

gations. In this section, we discuss the widely deployed software

and microcode mitigations released by Intel to address microarchi-

tectural data sampling attacks [41]. We furthermore discuss the

limitations of our analysis.

Leaking Stale Store Buffer Data. In this paper and our original

vulnerability disclosure report, we focused exclusively on leaking

outstanding store buffer entries in the limited time window after

the kernel transfers execution to user space. That is, we showed

that the WTF shortcut can be abused by unprivileged adversaries

to leak in-flight data from prior kernel store instructions that have

successfully retired but whose data has not yet been written out to

the memory hierarchy. Hence, for our attacks to work, the stores

must still be outstanding in the core’s store buffer, and we are only

able to recover at most the k most recent stores, where k is the

store buffer size (cf. Appendix A for measurement of the store buffer

size).

Concurrent to our work, Intel’s analysis [41] of store buffer

leakage revealed that WTF may furthermore be abused to leak

stale data from older stores, even after the store data has been

committed to memory, and the corresponding store buffer entry

has been freed. This observation has profound consequences for

defenses, as merely draining outstanding stores by serializing the

instruction stream (e.g., using mfence) does not suffice to fully

mitigate store buffer leakage.



Leaking Stores across HyperThreads. In Appendix A, we

measured the size of the store buffer. We discover that when both

logical CPUs on the same physical core are active, the store buffer

is statically partitioned between the threads. Otherwise, a thread

can use the entire store buffer. Consequently, one hardware thread

will not be able to read writes performed by another thread running

in parallel. However, Intel’s analysis [41] describes that leakage

may still occur when hardware threads go to sleep since stale store

buffer entries from the other thread are reused, or when hardware

threads wake up, and the store buffer is repartitioned again.

Operating System Countermeasures. For operating systems

that deploy kernel-private page tables with KAISER [25], the Melt-

down countermeasure, every context switch also serializes the

instruction stream when writing to CR3. We noticed that this has

the unintended side-effect of draining outstanding stores from the

store buffer [38], thereby preventing the WTF attack variants pre-

sented in this work. However, we note that this does distinctly not
suffice as a general countermeasure against store buffer leakage

since Intel’s analysis [41] describes that stale values may still be

recovered from the store buffer until explicitly overwritten.

The necessary software countermeasure for CPUswithout silicon-

levelWTFmitigations is, therefore, to explicitly overwrite the entire

store buffer on every context switch between user and kernel. To

support this functionality, Intel [41] has released a microcode up-

date that modifies the semantics of the legacy VERW instruction to

overwrite (amongst others) the store buffer contents. Operating

system kernels are required to execute a VERW dummy instruction

(or equivalent legacy software code snippet [41]) upon every con-

text switch to eliminate the possibility of reading stale kernel stores

from user space.

Finally, we note that the above VERW countermeasure might not

prevent attacks based on Store-to-Leak. To the best of our knowl-

edge, no countermeasure has been suggested against the Store-to-

Leak attack variants presented in this paper.

Gadget Finding. While Speculative Fetch+Bounce improves the

usability of Spectre V1 gadgets, when attacking the kernel, we did

not find such gadgets in kernel code. We will leave finding ways

for detection gadgets in real-world applications for future work.

10 CONCLUSION
With the WTF shortcut, we demonstrate a novel Meltdown-type

effect exploiting a previously unexplored microarchitectural com-

ponent, namely the store buffer. The attack enables an unprivileged

attacker to leak recently written values from the operating system.

While WTF affects various processor generations, we showed that

also recently introduced hardware mitigations are not sufficient

and further mitigations need to be deployed.

We also show a way to leak the TLB state using the store buffer.

We showed how to break KASLR on fully patched machines in

42 µs, as well as recover address space information from JavaScript.

Next, we found that the Store-to-Leak TLB side channel facilitates

the exploitation of Spectre gadgets. Finally, our work shows that

the hardware fixes for Meltdown in recent CPUs are not sufficient.
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A MEASURING THE STORE BUFFER SIZE
We now turn our attention to measuring the size of the store buffer.

Intel advertises that Skylake processors have 56 entries in the store

buffer [55]. We could not find any publications specifying the size

of the store buffer in newer processors, but as both Kaby Lake and

Coffee Lake R are not major architectures, we assume that the size

of the store buffers has not changed. As a final experiment in this

section, we now attempt to use the WTF shortcut to confirm this

assumption. To that aim, we perform a sequence of store operations,

each to a different address. We then use a faulty load aiming to

trigger a WTF shortcut and retrieve the value stored in the first

(oldest) store instruction. For each number of stores, we attempt

100 times at each of the 4096 page offsets, to a total of 409 600 per

number of stores. Figure 12 shows the likelihood of triggering the

WTF shortcut as a function of the number of stores for each of the

processor and configurations we tried. We see that we can trigger

the WTF shortcut provided that the sequence has up to 55 stores.

This number matches the known data for Skylake and confirms our

assumption that it has not changed in the newer processors.

The figure further shows that merely enabling hyperthreading

does not change the store buffer capacity available to the process.

However, running code on the second hyperthread of a core halves

the available capacity, even if the code does not perform any store.

This confirms that the store buffers are statically partitioned be-

tween the hyperthreads [42], and also shows that partitioning takes

effect only when both hyperthreads are active.
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